IRIG SERIAL TIME CODE FORMATS

ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE
REDSTONE TEST CENTER WHITE SANDS MISSILE RANGE YUMA PROVING GROUND

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER NAVAL AIR WARFARE CENTER WEAPONS DIVISION CHINA LAKE NAVAL AIR WARFARE CENTER WEAPONS DIVISION POINT MUGU NAVAL SURFACE WARFARE CENTER DAHLGREN DIVISION NAVAL UNDERSEA WARFARE CENTER DIVISION KEYPORT NAVAL UNDERSEA WARFARE CENTER DIVISION NEWPORT PACIFIC MISSILE RANGE FACILITY

30TH SPACE WING 45TH SPACE WING 96TH TEST WING 412TH TEST WING ARNOLD ENGINEERING DEVELOPMENT COMPLEX

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE DISTRIBUTION IS UNLIMITED

This page intentionally left blank.

IRIG SERIAL TIME CODE FORMATS

August 2016

Prepared by

TIMING COMMITTEE TELECOMMUNICATIONS AND TIMING GROUP

Published by

Secretariat
Range Commanders Council
U.S. Army White Sands Missile Range,

New Mexico 88002-5110

This page intentionally left blank.

Table of Contents

Preface ix
Acronyms xi
Chapter 1. Introduction 1-1
Chapter 2. General Description of this Standard 2-1
Chapter 3. General Description of Time Code Formats 3-1
3.1 Pulse Rise Time 3-1
3.2 Jitter 3-1
3.3 Bit Rates and Index Count 3-1
3.4 Time Frame, Time Frame Reference, and Time Frame Rates 3-1
3.5 Position Identifiers 3-2
3.6 Time Code Words 3-2
3.7 BCD Time-of-Year Code Word 3-2
3.8 Control Functions 3-3
3.9 Index Markers 3-4
3.10 Amplitude-Modulated Carrier 3-4
Chapter 4. Detailed Description of Formats 4-1
4.1 Serial Time Code Formats (A, B, D, E, and G) 4-1
4.2 Examples of Typical Modulated Carrier Signal Formats for IRIG A, B, E, and G 4-2
4.3 Modified Manchester Coding 4-5
4.4 Modified Manchester Decoding 4-7
Chapter 5. Detailed Description of Time Codes 5-1
5.1 Introduction 5-1
5.2 Format A 5-1
5.3 Format B 5-5
5.4 Format D 5-9
5.5 Format E. 5-12
5.6 Format G 5-16
5.7 Format H 5-20
Appendix A. Leap Year/Leap Second Conventions A-1
A. 1 Leap Year Convention A-1
A. 2 Leap Second Convention A-1
Appendix B. BCD Count/Binary Count B-1
Appendix C. Hardware Design Considerations. C-1
Appendix D. Glossary D-1
D. 1 Definitions of Terms And Usage D-1
Appendix E. Citations E-1
List of Figures
Figure 3-1. Typical Modulated Carrier Signal 3-5
Figure 4-1. Serial Time Code Formats 4-1
Figure 4-2. IRIG B Coding Comparisons: Level Shift, 1 kHz am, and Modified Manchester 4-6
Figure 4-3. Modified Manchester Coding 4-6
Figure 4-4. A Modified Manchester Encoded Sequence 4-7
Figure 5-1. Format A: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Fractions of Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits 5-2
Figure 5-2. Format B: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits. 5-6
Figure 5-3. Format D: BCD Time-of-Year in Days and Hours and Control Bits 5-10
Figure 5-4. Format E: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Control Bits 5-13
Figure 5-5. Format G: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Fractions-of-Seconds, and Control Bits 5-17
Figure 5-6. Format H: BCD Time-of-Year in Days, Hours, Minutes, and Control Bits 5-21
List of Tables
Table 3-1. Bit Rates And Index Count Intervals Of The Time Code Formats 3-1
Table 3-2. Time Frame Rates And Time Frame Intervals Of The Formats 3-2
Table 3-3. Position Identifiers And Index Count Locations 3-2
Table 3-4. Number of Available Control Bits in Each Time Code Format 3-3
Table 3-5. Typical Modulated Carrier Signal Formats for A, B, E, D, G, and H 3-6
Table 4-1. Permissible Code Formats (A, B, D, E, G, H) 4-2
Table 4-2. Typical Modulated Carrier Signal Formats (IRIG A) 4-2
Table 4-3. Typical Modulated Carrier Signal Formats (IRIG B) 4-3
Table 4-4. Typical Modulated Carrier Signal Formats (IRIG E) 4-4
Table 4-5. Typical Modulated Carrier Signal Formats (IRIG G) 4-4
Table 4-6. Truth Table Is A Modulo-2 Adder. 4-7
Table 5-1. Format A, Signal A000 5-3
Table 5-2. IRIG-A Control Bit Assignment for Year Information 5-4
Table 5-3. Parameters for Format A 5-5
Table 5-4. Format B, Signal B000 5-7
Table 5-5. IRIG-B Control Bit Assignment for Year Information. 5-8
Table 5-6. Parameters for Format B 5-9
Table 5-7. Format D, Signal D001 5-11
Table 5-8. Parameters for Format D 5-12
Table 5-9. Format E, Signal E001 5-14
Table 5-10. IRIG-E Control Bit Assignment For Year Information 5-15
Table 5-11. Parameters for Format E 5-16
Table 5-12. Format G, Signal G001 5-18
Table 5-13. IRIG-G Control Bit Assignment for Year Information 5-19
Table 5-14. Parameters For Format G 5-20
Table 5-15. Format H, Signal H001 5-22
Table 5-16. Parameters for Format H 5-23
Table B-1. BCD Count (8 n 4 n 2 n 1 n) B-1
Table B-2. Binary Count (2n) B-1
Table C-1. Time Code Generator Hardware Minimum Design Considerations C-1

This page intentionally left blank.

Preface

IRIG Standard 200 was last updated in September 2004 and added year information for the IRIG timecodes. This 2016 edition of the standard corrects minor technical errors throughout the document. The task of revising this standard was assigned to the Telecommunications and Timing Group of the Range Commanders Council.

All U.S. Government ranges and facilities should adhere to this standard where serial time codes are generated for correlation of data with time.

Please direct any questions regarding this document to the RCC Secretariat as shown below.

Secretariat, Range Commanders Council
ATTN: TEWS-RCC
1510 Headquarters Avenue
White Sands Missile Range, New Mexico 88002-5110
Phone: DSN 258-1107 Com (575) 678-1107
Fax: DSN 258-7519 Com (575) 678-7519
Email: usarmy.wsmr.atec.list.rcc@mail.mil

This page intentionally left blank.

Acronyms

$\mu \mathrm{s}$	microsecond $\left(10^{-6}\right.$ s $)$
BCD	binary coded decimal
BIH	Bureau International de l'Heure
CF	control function
d	day
dc	direct current
DoD	Department of Defense
fph	frames per hour
fpm	frames per minute
fps	frames per second
GPS	Global Positioning System
h	hour
Hz	hertz
k	1000
kHz	kilohertz (1000 Hz)
LSB	least significant bit
m	minute
mo	month
ms	millisecond (10 0^{-3} s $)$
MSB	most significant bit
NASA	National Aeronautics and Space Administration
NRZ-L	non-return-to-zero level
ns	nanosecond (10 0^{-9} s)
pph	pulses per hour
ppm	pulses per minute
pps	pulses per second
s	second
SBS	straight binary second(s)
TAI	International Atomic Time
TOD	time-of-day
TOY	time-of-year
USNO	United States Naval Observatory
UTC	Coordinated Universal Time
y	year

This page intentionally left blank.

CHAPTER 1

Introduction

Modern-day electronic systems such as communication systems, data handling systems, and missile and spacecraft tracking systems require time-of-day (TOD) and time-of-year (TOY) information for correlation of data with time. Parallel and serial formatted time codes are used to efficiently interface the timing system output with the user system. Parallel time codes are defined in IRIG Standard 205-87. ${ }^{1}$ Standardization of time codes is necessary to ensure system compatibility among the various ranges, ground tracking networks, spacecraft and missile projects, data reduction facilities, and international cooperative projects.

This standard defines the characteristics of six serial time codes presently used by the U.S. Government and private industry. Year information has been added to IRIG codes A, B, E, and G. It should be noted that this standard reflects the present state of the art in serial time code formatting and is not intended to constrain proposals for new serial time codes with greater resolution.

All Department of Defense (DoD) test ranges, facilities, and other government agencies such as the National Aeronautics and Space Administration (NASA) maintain Coordinated Universal Time (UTC) referenced to the United States Naval Observatory (USNO) Master Clock. The designation for time in the United States is UTC (USNO).

[^0]This page intentionally left blank.

CHAPTER 2

General Description of this Standard

This standard consists of a family of rate-scaled serial time codes with formats containing up to four coded expressions or words. All time codes contain control functions (CFs) that are reserved for encoding various controls, identification, and other special-purpose functions. Time codes A, B, D, E, G, and H are described below.

- Time code A has a time frame of 0.1 seconds with an index count of 1 millisecond and contains TOY in days, hours, minutes, seconds, tenths of seconds, and year information in a binary coded decimal (BCD) format and seconds-of-day in straight binary seconds (SBS).
- Time code B has a time frame of 1 second with an index count of 10 milliseconds and contains TOY in days, hours, minutes, seconds, and year information in a BCD format and seconds-of-day in SBS.
- Time code D has a time frame of 1 hour with an index count of 1 minute and contains TOY information in days and hours in a BCD format.
- Time code E has a time frame of 10 seconds with an index count of 100 milliseconds and contains TOY in days, hours, minutes, seconds, and year information in a BCD format.
- Time code G has a time frame of 0.01 seconds with an index count of 0.1 milliseconds and contains TOY information in days, hours, minutes, seconds, tenths, and hundredths of seconds and year information in a BCD format.
- Time code H has a time frame of 1 minute with an index count of 1 second and contains TOY information in days, hours, and minutes in a BCD format.

This page intentionally left blank.

CHAPTER 3

General Description of Time Code Formats

The time code formats are described in the paragraphs below. Additional reference information is provided at the end of this document on the related topics of leap year and leap second conventions (Appendix A), BCD count data and binary count data (Appendix B), and time code generator hardware design considerations (Appendix C).

3.1 Pulse Rise Time

The specified pulse (direct current [dc] level shift bit) rise time shall be obtained between the 10 and 90% amplitude points (see Appendix C).

3.2 Jitter

The modulated code is defined as $\leq 1 \%$ at the carrier frequency. The dc level shift code is defined as the pulse-to-pulse variation at the 50% amplitude points on the leading edges of successive pulses or bits (see Appendix C).

3.3 Bit Rates and Index Count

Each pulse in a time code word/subword is called a bit. The on-time reference point for all bits is the leading edge of the bit. The repetition rate at which the bits occur is called the bit rate. Each bit has an associated numerical index count identification. The time interval between the leading edge of two consecutive bits is the index count interval. The index count begins at the frame reference point (the leading edge of the reference bit [P_{r}]) with index count 0 and increases one count each index count until the time frame is complete.

The bit rates and index count intervals of the time code formats are shown in Table 3-1.

Table 3-1. Bit Rates And Index Count Intervals Of The Time Code Formats			
Format	Bit Rate ${ }^{\mathbf{1}}$	Index Count Interval	
A	1 kpps	1 millisecond	
B	100 pps	10 milliseconds	
D	1 ppm	1 minute	
E	10 pps	0.1 second	
G	10 kpps	0.1 millisecond	
H	1 pps	1 second	
See the Acronyms list for bit rate definitions.			

3.4 Time Frame, Time Frame Reference, and Time Frame Rates

A time code frame begins with a frame reference marker P_{0} (position identifier) followed by a reference bit P_{r} with each having duration equal to 0.8 of the index count interval of the respective code. The on-time reference point of a time frame is the leading edge of the reference bit P_{r}. The repetition rate at which the time frames occur is called the time frame rate. The time frame rates and time frame intervals of the formats are shown in Table 3-2.

Table 3-2. Time Frame Rates And Time Frame Intervals Of The Formats		
Format	Time Frame Rate	Time Frame Interval
A	10 fps	0.1 second
B	1 fps	1 second
D	1 fph	1 hour
E	6 fpm	10 seconds
G	100 fps	10 ms
H	1 fpm	1 minute

3.5 Position Identifiers

Position identifiers have durations equal to 0.8 of the index count interval of the respective code. The leading edge of the position identifier P_{0} occurs one index count interval before the frame reference point P_{r} and the succeeding position identifiers ($\mathrm{P}_{1}, \mathrm{P}_{2} \ldots \mathrm{P}_{0}$) occur every succeeding tenth index count interval. The repetition rate at which the position identifiers occur is always 0.1 of the time format bit rate.

3.6 Time Code Words

The two time code words employed in this standard are:

- BCD TOY and year;
- SBS TOD (seconds-of-day).

All time code formats are pulse-width coded. A binary (1) bit has duration equal to 0.5 of the index count interval and a binary (0) bit has duration equal to 0.2 of the index count interval. The BCD TOY code reads 0 hours, minutes, seconds, and fraction of seconds at 2400 each day and reads day 001 at 2400 of day 365 or day 366 in a leap year. The year code counts year and cycles to the next year on January $1^{\text {st }}$ of each year and will count to year 2099. The SBS TOD code reads 0 seconds at 2400 each day excluding leap second days when a second may be added or subtracted.

3.7 BCD Time-of-Year Code Word

The BCD TOY and year code word consists of subwords in days, hours, minutes, seconds, and year with fractions of a second in a BCD representation and TOD in SBS of day. The position identifiers preceding the decimal digits and the index count locations of the decimal digits (if present) are in Table 3-3.

Table 3-3. Position Identifiers And Index Count Locations		
BCD Code Decimal Digits	Decimal Digits Follow Position Identifier	Digits Occupy Index Count Positions
Units of Seconds	P_{r}	$1-4$
Tens of Seconds		$6-8$
Units of Minutes	P_{1}	$10-13$
Tens of Minutes		$15-17$

Units of Hours	P_{2}	$20-23$
Tens of Hours		$25-26$
Units of Days	P_{3}	$30-33$
Tens of Days		$35-38$
Hundreds of Days	P_{4}	$40-41$
Tenths of Seconds		$45-48$
For Code G	P_{5}	$50-53$
Hundredths of Seconds		
For Codes A, B, and E	P_{5}	$50-53$
Units of Years		$55-58$
Tens of Years	P_{6}	
For Code G		$60-63$
Units of Years		$65-68$
Tens of Years		

Formats A, B, and E include an optional SBS time code word in addition to a BCD TOY time and year code word. The SBS word follows position identifier P_{8} beginning with the LSB $\left(2^{0}\right)$ at index count 80 and progressing to the MSB $\left(2^{16}\right)$ at index count 97 with a position identifier P_{9} occurring between the ninth $\left(2^{8}\right)$ and tenth $\left(2^{9}\right)$ binary bits.

Formats A, B, E, and G also contain year information in a BCD format.

3.8 Control Functions

All time code formats reserve a set of CF bits for the encoding of various control, identification, and other special-purpose functions. The control bits may be programmed in any predetermined coding system. A binary 1 bit has duration equal to 0.5 of the index count interval and a binary 0 bit has duration equal to 0.2 of the index count interval. The CF bits follow position identifiers $\mathrm{P}_{5}, \mathrm{P}_{6}$, or P_{7} for formats $\mathrm{A}, \mathrm{B}, \mathrm{E}$, and G beginning at index count 50,60 , or 70 with one CF bit per index count except for each tenth bit, which is a position identifier. The number of available control bits in each time code format is shown at Table 3-4.

Table 3-4. Number of Available Control Bits in Each Time Code Format	
Format	Control Function Bits
A	18
B	18
D	9
E	18
G	27
H	9

The CFs are presently intended for internal range use but not for inter-range applications; therefore, no standard coding system exists. The inclusion of CFs into a time code format as well as the coding system employed is an individual user-defined option.

3.9 Index Markers

Index markers occur at each index count position, which is not assigned as a reference marker, position identifier, data code, or CF bit. Each index marker bit has duration equal to 0.2 of the index count interval of the respective time code format.

3.10 Amplitude-Modulated Carrier

A standard sine wave carrier frequency to be amplitude-modulated by a time code is synchronized to have positive-going, zero-axis crossings coincident with the leading edges of the modulating code bits. A mark-to-space ratio of 10:3 is standard with a range of 3:1 to 6:1 (see Figure 3-1 and Table 3-5).

Figure 3-1. Typical Modulated Carrier Signal

Table 3-5. Typical Modulated Carrier Signal Formats for A, B, E, D, G, and H

Formats					Mark Interval Number of Cycles			
Format	Signal No.	Time Frame Rate	Carrier Frequency F	Signal Bit Rate ER	$\begin{aligned} & \hline \text { Ratio } \\ & \text { F/ER } \end{aligned}$	Code " 0 " \& Index	Code " 1 "	$\begin{gathered} \text { Position } \\ \text { Identifier \& Ref. } \end{gathered}$
A	$\begin{gathered} \text { A 130, 132, } \\ 133,134 \\ \hline \end{gathered}$	10 per sec.	10 kHz	1 kpps	10:1	2	5	8
B	$\begin{gathered} \text { B 120, 122, } \\ 123,127 \\ \hline \end{gathered}$	1 per sec.	1 kHz	100 pps	10:1	2	5	8
D	$\begin{gathered} \hline \text { D 111, 112, } \\ 121,122 \end{gathered}$	1 per hr.	$\begin{gathered} \hline 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 1 \mathrm{ppm} \\ & 1 \mathrm{ppm} \end{aligned}$	$\begin{aligned} & 6000: 1 \\ & 60000: 1 \end{aligned}$	$\begin{gathered} \hline 1200 \\ 12000 \end{gathered}$	$\begin{gathered} 3000 \\ 30000 \end{gathered}$	$\begin{aligned} & 4800 \\ & 48000 \end{aligned}$
E	$\begin{gathered} \hline \text { E 111, 112, } \\ 121,122,125 \\ \hline \end{gathered}$	6 per min	$\begin{gathered} \hline 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ \hline \end{gathered}$	10 pps 10 pps	$\begin{aligned} & \hline 10: 1 \\ & 100: 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ 80 \\ \hline \end{gathered}$
G	$\begin{gathered} \text { G 141, 142, } \\ 126 \end{gathered}$	100 per sec.	100 kHz	10 kpps	10:1	2	5	8
H	$\begin{gathered} \hline \text { H 111, } 112, \\ 121,122 \\ \hline \end{gathered}$	1 per min.	$\begin{gathered} \hline 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 1 \mathrm{pps} \\ & 1 \mathrm{pps} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 100:1 } \\ & 1000: 1 \end{aligned}$	$\begin{gathered} 20 \\ 200 \end{gathered}$	$\begin{gathered} 50 \\ 500 \end{gathered}$	$\begin{gathered} 80 \\ 80 \\ 80 \end{gathered}$

CHAPTER 4

Detailed Description of Formats

4.1 Serial Time Code Formats (A, B, D, E, and G)

The family of rate-scaled serial time code formats is designated A, B, D, E, G, and H. Various combinations of subwords and signal forms make up a time code word. To differentiate between these forms, signal identification numbers are assigned to each permissible combination (see Figure 4-1).

Figure 4-1. Serial Time Code Formats
The information in Table 4-1 shows the permissible code formats. Codes D and H remain unchanged. Codes A, B, E, and G have changed to permit year information as indicated below. No other combinations are standard.

Table 4-1. Permissible Code Formats (A, B, D, E, G, H)			
Format	Modulation Type	Frequency/Resolution	Coded Expressions
A	$0,1,2$	$0,3,4,5$	$0,1,2,3,4,5,6,7$
B	$0,1,2$	$0,2,3,4,5$	$0,1,2,3,4,5,6,7$
D	0,1	$0,1,2$	1,2
E	0,1	$0,1,2$	$1,2,5,6$
G	$0,1,2$	$0,4,5$	$1,2,5,6$
H	0,1	$0,1,2$	1,2

The Telecommunications and Timing Group of the Range Commanders Council has adopted a Modified Manchester modulation technique as an option for the IRIG serial time codes A, B, and G as an addition to the standard AM and level shift modulation now permitted. Also, year information has been added to codes $\mathrm{A}, \mathrm{B}, \mathrm{E}$, and G . Codes D and H remain unchanged. It should be noted that at present, the assignment of control bits (CFs) to specific functions in the IRIG serial time codes is left to the end user of the time codes.

4.2 Examples of Typical Modulated Carrier Signal Formats for IRIG A, B, E, and G

Examples are provided on the following pages as follows:

$$
\begin{array}{ll}
\text { IRIG A: } & \underline{\text { Table 4-2 }} \\
\text { IRIG B: } & \underline{\text { Table 4-3 }} \\
\text { IRIG E: } & \underline{\text { Table 4-4 }} \\
\text { IRIG G: } & \underline{\text { Table 4-5 }}
\end{array}
$$

Table	Typical Modulated Carrier Signal Formats (IRIG A)
Modified Manchester Modulations ${ }^{1}$	
A 237	$\begin{aligned} & \hline 2=\text { Manchester modulation } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 7=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{SBS} \\ & \hline \end{aligned}$
Standard AM modulations (Example Formats)	
A 130	$\begin{aligned} & \hline \hline 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 0=\mathrm{BCD}_{\mathrm{TO}}, \mathrm{CF}, \mathrm{SBS} \\ & \hline \end{aligned}$
A 134	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 4=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} \text { YEAR }, \mathrm{CF}, \mathrm{SBS} \\ & \hline \end{aligned}$
A 132	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 2=\mathrm{BCD}_{\text {TOY }} \end{aligned}$
A 136	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 6=\mathrm{BCD}_{\text {TOY, }}, \mathrm{BCD}_{\text {YEAR }} \\ & \hline \end{aligned}$

Table 4-2. Typical Modulated Carrier Signal Formats (IRIG A)

A 133	$\begin{aligned} & \hline 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 3=\mathrm{BCD}_{\text {TOY },} \text { SBS } \end{aligned}$
A 137	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 7=\mathrm{BCD}_{\text {TOY },}, \mathrm{BCD} \\ & \text { YEAR }, \text { SBS } \end{aligned}$
A 131	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 1=\mathrm{BCD}_{\text {TOY }}, \mathrm{CF} \end{aligned}$
A 135	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{CF} \end{aligned}$
${ }^{1}$ Modified Manchester modulation is an option for IRIG A in addition to the standard AM modulation in the formats in this table	

Table 4-3. Typical Modulated Carrier Signal Formats (IRIG B)	
Modified Manchester Modulations ${ }^{1}$	
B 237	$\begin{aligned} & \hline 2=\text { Manchester modulation } \\ & 3=10 \mathrm{kHz} / 0.1 \mathrm{~ms} \\ & 7=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{SBS} \end{aligned}$
Standard AM modulations (Example Formats)	
B 120	$\begin{aligned} & \hline 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 0=\mathrm{BCD}_{\text {Toy }}, \mathrm{CF}, \mathrm{SBS} \\ & \hline \end{aligned}$
B 124	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 4=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} \\ & \text { YEAR }, \mathrm{CF}, \mathrm{SBS} \end{aligned}$
B 121	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 1=\mathrm{BCD}_{\text {TOY }}, \mathrm{CF} \end{aligned}$
B 125	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} \\ & \text { YEAR }, \mathrm{CF} \\ & \hline \end{aligned}$
B 122	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 2=\mathrm{BCD}_{\text {ToY }} \\ & \hline \end{aligned}$
B 126	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 6=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} \\ & \text { YEAR } \end{aligned}$
B 123	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 3=\mathrm{BCD}_{\text {TOY }} \mathrm{SBS} \end{aligned}$

Table 4-3. Typical Modulated Carrier Signal Formats (IRIG B)

B 127	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 7=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{SBS} \end{aligned}$

${ }^{1}$ Modified Manchester modulation is an option for IRIG B in addition to the standard AM modulation in the formats in this table.

Table 4-4. Typical Modulated Carrier Signal Formats (IRIG E)	
Standard AM modulations (Example Formats)	
E 111	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 1=100 \mathrm{~Hz} / 10 \mathrm{~ms} \\ & 1=\mathrm{BCD}_{\text {ToY }}, \mathrm{CF} \end{aligned}$
E 115	$\begin{aligned} & 1=\text { Sine wave }, \text { amplitude modulated } \\ & 1=100 \mathrm{~Hz} / 10 \mathrm{~ms} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{CF} \end{aligned}$
E 112	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 1=100 \mathrm{~Hz} / 10 \mathrm{~ms} \\ & 2=\mathrm{BCD}_{\mathrm{TOY}}, \\ & \hline \end{aligned}$
E 116	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 1=100 \mathrm{~Hz} / 10 \mathrm{~ms} \\ & 6=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }} \end{aligned}$
E 121	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 1=\mathrm{BCD}_{\text {TOY },} \mathrm{CF} \\ & \hline \end{aligned}$
E 125	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{CF} \end{aligned}$
E 122	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 2=\mathrm{BCD}_{\text {ToY }} \\ & \hline \end{aligned}$
E 126	$\begin{aligned} & 1=\text { Sine wave, amplitude modulated } \\ & 2=1 \mathrm{kHz} / 1 \mathrm{~ms} \\ & 6=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} \\ & \text { YEAR } \end{aligned}$

Table 4-5. Typical Modulated Carrier Signal Formats (IRIG G)

Modified Manchester Modulations ${ }^{1}$	
G 245	$\begin{aligned} & 2=\text { Manchester modulation } \\ & 4=100 \mathrm{kHz} / 10 \mu \mathrm{~s} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }}, \mathrm{CF} \end{aligned}$
Standard AM modulations (Example Formats)	
G 141	$\begin{aligned} & 1=\text { Sign wave, amplitude modulation } \\ & 4=100 \mathrm{kHz} / 10 \mu \mathrm{~s} \\ & 1=\mathrm{BCD}_{\text {toy }}, \mathrm{CF} \end{aligned}$

Table 4-5. Typical Modulated Carrier Signal Formats (IRIG G)	
G 145	$\begin{aligned} & \hline 1 \text { = Sign wave, amplitude modulation } \\ & 4=100 \mathrm{kHz} / 10 \mu \mathrm{~s} \\ & 5=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD} D_{\text {YEAR }}, \mathrm{CF} \\ & \hline \end{aligned}$
G 142	$\begin{aligned} & 1=\text { Sign wave, amplitude modulated } \\ & 4=100 \mathrm{kHz} / 10 \mu \mathrm{~s} \\ & 2=\mathrm{BCD}_{\mathrm{TOY}} \end{aligned}$
G 146	$\begin{aligned} & 1=\text { Sign wave, amplitude modulated } \\ & 4=100 \mathrm{kHz} / 10 \mu \mathrm{~s} \\ & 6=\mathrm{BCD}_{\text {TOY }}, \mathrm{BCD}_{\text {YEAR }} \end{aligned}$
${ }^{1}$ Modified Manchester modulation is an option for IRIG G in addition to the standard AM modulation in the formats in this table.	

4.3 Modified Manchester Coding

Standard Manchester modulation or encoding is a return-to-zero type, where a rising edge in the middle of the clock window indicates a binary 1 and a falling edge indicates a binary 0 . This modification to the Manchester code shifts the data window so the data are at the edge of the clock window that is on time with the one-pps clock synchronized to UTC. Thus, the data edge is the on-time mark in the code. Manchester coding is used because it is easy to generate digitally, easily modulated for use over fiber or coaxial cable, simple to decode, has a zero mean, and is easily detected even at low voltage levels.

The basic Modified Manchester modulation, compared with the AM and level shift modulations, are shown at Figure 4-2 and Figure 4-3. The Manchester encoding uses a squarewave as the encoding (data) clock, with the rising edge on time with UTC. The frequency of the encoding clock shall be no less than ten times the index rate of the time code generated. As an example, the clock rate for IRIG B 230 shall be 10 kHz .

Figure 4-2. IRIG B Coding Comparisons: Level Shift, 1 kHz am, and Modified Manchester

Figure 4-3. Modified Manchester Coding
The Modified Manchester coding technique has several advantages as noted below.

- No dc component.
- Can be alternating current coupled.
- Better signal-to-noise ratio.
- Good spectral power density.
- Easily decoded.
- Better timing resolution.
- The link integrity monitoring capability is intrinsic to bipolar pulse modulation.
- The coding technique is designed to operate over fiber-optic or coaxial lines for short distances.

4.4 Modified Manchester Decoding

An example of a Modified Manchester encoded sequence is shown at Figure 4-4, where each symbol is "sub-bit" encoded, i.e., a data one equals a zero-one, and a data zero equals a one-zero.

Figure 4-4. A Modified Manchester Encoded Sequence
The encoded sequence at Figure 4-4 is formed by modulo-2 adding the non-return-to-zero level (NRZ-L) sequence with the clock. The truth table shown in Table 4-6 is for a modulo-2 adder, which is equivalent to an Exclusive-OR.

Table 4-6. Truth Table Is A Modulo-2 Adder		
Input A	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	0

To decode the encoded sequence of Figure 4-4, it is only necessary to modulo-2 add the clock with the encoded sequence and the original NRZ-L sequence results. It should be noted that the determination is made after integrating across a bit period. In this way, the maximum amount of energy is used in the determination of each bit. Likewise, an engineer could have integrated or sampled both halves of the encoded sequence and reconstructed the original NRZ-L sequence by applying the encoding rule. This means that if sampled halves are $0-1$, then a data 1 is reconstructed, and if the sampled halves are 1-0, then a data 0 is reconstructed. Once again, as much energy as possible is used from the encoded sequence to reconstruct the original NRZ-L sequence. This procedure minimizes the probability of error.

When the above procedure is used, the reconstructed data are coherent with the clock; that is, the NRZ-L data transitions will agree with the positive going edge of the clock; however, since the decisions are made at the end of the symbol period, the reconstructed NRZ-L data are delayed one clock period. This means that when the entire time is received, the received time code or local clock needs to be advanced by one clock period. Also, if desired, one can correct the receive clock for significant signal propagation delays.

This page intentionally left blank.

CHAPTER 5

Detailed Description of Time Codes

5.1 Introduction

Detailed descriptions of individual time code formats are shown in the following paragraphs.

5.2 Format A

The following is a detailed description of IRIG time code format A.

- The beginning of each 0.1 -second time frame is identified by two consecutive $0.8-\mathrm{ms}$ bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers, P_{0} and P_{1} through P_{9}, (0.8 ms duration), each use 1 ms of the time frame (which is one full index count duration), and occur every tenth bit and 1 ms before the leading edge of each succeeding 100-pps on-time bit (see Figure 5-1).
- The three time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 1 kpps . The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and index markers have duration of 0.2 ms and the binary 1 has duration of 0.5 ms .
- The BCD TOY coded word consists of 34 bits beginning at index count 1 . The TOY subword bits occur between position identifiers P_{0} and $\mathrm{P}_{5}: 7$ bits for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds. Year information, coded in 8 bits, occur between position identifiers P_{5} and P_{6} to complete the BCD time code word. An index marker occurs between the decimal digits in each subword, except tenths of seconds, to provide separation for visual resolution. The LSB occurs first except for the fractional seconds subword that follows the day-of-year subword. The BCD TOY code recycles yearly.
- There are 18 CFs occur between position identifiers P_{6} and P_{8}. Any CF bit or combination of bits can be programmed to read a binary 1 or a binary 0 during any specified number of frames. Each control bit position is identified in Table 5-1.
- The SBS TOD code word occurs at index count 80 between position identifiers P_{8} and P_{0}. The time of day in seconds is given in 17 bits with the LSB occurring first. A position identifier P_{9} occurs between the ninth and tenth binary seconds. The code recycles each 24-hour period.
- Control bit assignments, functions, and parameters for time code format A are shown on the following pages.
Table 5-2: Identifies the control bit assignments for year information.
Table 5-3: Identifies the parameters that characterize the time code for Format A.

Figure 5-1. Format A: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Fractions of Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits

Table 5-1. Format A, Signal A000

BCD Time-of-Year Code (34 Digits)																
Seconds Subword			Minutes Subword			Hours Subword			Days And Fractional Second Subwords							
BCD Code Digit No.	Subword Digit Wt Seconds	Bit Time ${ }^{1}$	BCD Code Digit No.	Subword Digit Wt Minutes	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time	BCD Code Digit No.			Bit		BCD Code Digit No.	Subword Digit Wt Days	Bit Time
Reference Bit		P_{r}	8	1	$\mathrm{P}_{\mathrm{r}}+10 \mathrm{~ms}$	15	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~ms}$	21			$\mathrm{P}_{\mathrm{r}}+$		29	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{~ms}$
1	1	$\mathrm{P}_{\mathrm{r}}+1 \mathrm{~ms}$	9	2	$\mathrm{P}_{\mathrm{r}}+11 \mathrm{~ms}$	16	2	$\mathrm{P}_{\mathrm{r}}+21 \mathrm{~ms}$	22			$\mathrm{P}_{\mathrm{r}}+3$		30	200	$\mathrm{P}_{\mathrm{r}}+41 \mathrm{~ms}$
2	2	$\mathrm{P}_{\mathrm{r}}+2 \mathrm{~ms}$	10	4	$\mathrm{P}_{\mathrm{r}}+12 \mathrm{~ms}$	17	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{~ms}$	23			$\mathrm{P}_{\mathrm{r}}+$		Inde		$\mathrm{P}_{\mathrm{r}}+42 \mathrm{~ms}$
3	4	$\mathrm{P}_{\mathrm{r}}+3 \mathrm{~ms}$	11	8	$\mathrm{P}_{\mathrm{r}}+13 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+23 \mathrm{~ms}$	24			$\mathrm{Pr}_{\mathrm{r}}+$		Inde		$\mathrm{P}_{\mathrm{r}}+43 \mathrm{~ms}$
4	8	$\mathrm{P}_{\mathrm{r}}+4 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+14 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+24 \mathrm{~ms}$	Index Bit			$\mathrm{P}_{\mathrm{r}}+34 \mathrm{~ms}$		Index Bit		$\mathrm{P}_{\mathrm{r}}+44 \mathrm{~ms}$
Index Bit		$\mathrm{P}_{\mathrm{r}}+5 \mathrm{~ms}$	12	10	$\mathrm{P}_{\mathrm{r}}+15 \mathrm{~ms}$	19	10	$\mathrm{P}_{\mathrm{r}}+25 \mathrm{~ms}$	25			$\mathrm{P}_{\mathrm{r}}+3$		31	0.1	$\mathrm{P}_{\mathrm{r}}+45 \mathrm{~ms}$
5	10	$\mathrm{P}_{\mathrm{r}}+6 \mathrm{~ms}$	13	20	$\mathrm{P}_{\mathrm{r}}+16 \mathrm{~ms}$	20	20	$\mathrm{P}_{\mathrm{r}}+26 \mathrm{~ms}$	26			$\mathrm{P}_{\mathrm{r}}+3$		32	0.2	$\mathrm{P}_{\mathrm{r}}+46 \mathrm{~ms}$
6	20	$\mathrm{P}_{\mathrm{r}}+7 \mathrm{~ms}$	14	40	$\mathrm{P}_{\mathrm{r}}+17 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+27 \mathrm{~ms}$	27			$\mathrm{P}_{\mathrm{r}}+37$		33	0.4	$\mathrm{P}_{\mathrm{r}}+47 \mathrm{~ms}$
7	40	$\mathrm{P}_{\mathrm{r}}+8 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+18 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+28 \mathrm{~ms}$	28			$\mathrm{P}_{\mathrm{r}}+38$		34	0.8	$\mathrm{P}_{\mathrm{r}}+48 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+9 \mathrm{~ms}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+19 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+29 \mathrm{~ms}$	Position Ident. (P_{4})			$\mathrm{P}_{\mathrm{r}}+39 \mathrm{~ms}$		Position Ident. (P_{5})		$\mathrm{P}_{\mathrm{r}}+49 \mathrm{~ms}$
Year and Control Functions (27 Bits)								Straight Binary Seconds Time-of-Day Code (17 Digits)								
Control Function B	Bit Time		$\begin{gathered} \hline \hline \text { Control } \\ \text { Function Bit } \end{gathered}$	Bit Time	Control Function Bit	Bit Time		$\begin{gathered} \hline \hline \text { SB Code } \\ \text { Bit } \end{gathered}$	Subword Digit Weight		Bit Time		$\begin{gathered} \hline \hline \text { SB Code } \\ \text { Bit } \end{gathered}$	Code Su Digit	Subword Digit Weight	Bit Time
1	$\begin{gathered} \hline \hline \mathrm{P}_{\mathrm{r}}+50 \mathrm{~ms} \text { Units } \\ \text { of Year } 01 \end{gathered}$		1	$\mathrm{P}_{\mathrm{r}}+60 \mathrm{~ms}$	10	$\mathrm{P}_{\mathrm{r}}+70 \mathrm{~ms}$		1	$2^{0}=$ (1)		$\mathrm{P}_{\mathrm{r}}+80 \mathrm{~ms}$			0	$2^{9}=(512)$	$\mathrm{P}_{\mathrm{r}}+90 \mathrm{~ms}$
2	Units of Year 02		2	$\mathrm{P}_{\mathrm{r}}+61 \mathrm{~ms}$	11	$\mathrm{P}_{\mathrm{r}}+71 \mathrm{~ms}$		2	$2^{1}=$		$\mathrm{P}_{\mathrm{r}}+8$	1 ms		$2^{10}=$	(1024)	$\mathrm{P}_{\mathrm{r}}+91 \mathrm{~ms}$
3	Units of Year 04		3	$\mathrm{P}_{\mathrm{r}}+62 \mathrm{~ms}$	12	$\mathrm{P}_{\mathrm{r}}+72 \mathrm{~ms}$		3	$2^{2}=$		$\mathrm{Pr}_{\mathrm{r}}+8$	2 ms		2	(2048)	$\mathrm{P}_{\mathrm{r}}+92 \mathrm{~ms}$
4	Units of Year 08		4	$\mathrm{P}_{\mathrm{r}}+63 \mathrm{~ms}$	13	$\mathrm{P}_{\mathrm{r}}+73 \mathrm{~ms}$		4	$2^{3}=$		$\mathrm{P}_{\mathrm{r}}+$	3 ms		$3{ }^{3}$	(4096)	$\mathrm{P}_{\mathrm{r}}+93 \mathrm{~ms}$
Index Mar	$\mathrm{P}_{\mathrm{r}}+54 \mathrm{~ms}$		5	$\mathrm{P}_{\mathrm{r}}+64 \mathrm{~ms}$	14	$\mathrm{P}_{\mathrm{r}}+74 \mathrm{~ms}$		5	$2^{4}=($		$\mathrm{Pr}_{\mathrm{r}}+8$	4 ms		4 ${ }^{\text {a }}$	(8192)	$\mathrm{P}_{\mathrm{r}}+94 \mathrm{~ms}$
5	Tens of Year 10		6	$\mathrm{P}_{\mathrm{r}}+65 \mathrm{~ms}$	15	$\mathrm{P}_{\mathrm{r}}+75 \mathrm{~ms}$		6	$2^{5}=($		$\mathrm{P}_{\mathrm{r}}+8$	源		5 ${ }^{\text {a }}$	6384)	$\mathrm{P}_{\mathrm{r}}+95 \mathrm{~ms}$
6	Tens of Year 20		7	$\mathrm{P}_{\mathrm{r}}+66 \mathrm{~ms}$	16	$\mathrm{P}_{\mathrm{r}}+76 \mathrm{~ms}$		7	$2^{6}=($		$\mathrm{Pr}_{\mathrm{r}}+8$	6ms		$6{ }^{6}$ 2 ${ }^{15}=$	32768)	$\mathrm{P}_{\mathrm{r}}+96 \mathrm{~ms}$
7	Tens of Year 40		8	$\mathrm{P}_{\mathrm{r}}+67 \mathrm{~ms}$	17	$\mathrm{P}_{\mathrm{r}}+77 \mathrm{~ms}$		8	$2^{7}=(1$		$\mathrm{P}_{\mathrm{r}}+8$	7 ms		$7{ }^{7}$ 2 $2^{16}=$	65536)	$\mathrm{P}_{\mathrm{r}}+97 \mathrm{~ms}$
8	Tens of Year 80		9	$\mathrm{P}_{\mathrm{r}}+68 \mathrm{~ms}$	18	$\mathrm{P}_{\mathrm{r}}+78 \mathrm{~ms}$					$\mathrm{P}_{\mathrm{r}}+8$	8 ms	Index Bit			$\mathrm{P}_{\mathrm{r}}+98 \mathrm{~ms}$
Position Ident. (P_{6})	$\mathrm{P}_{\mathrm{r}}+59 \mathrm{~ms}$		Position Ident. (P_{7})	$\mathrm{P}_{\mathrm{r}}+69 \mathrm{~ms}$	Position Ident. (P_{8})	$\mathrm{P}_{\mathrm{r}}+79 \mathrm{~ms}$		Position Ident. (P_{9})			$\mathrm{Pr}_{\mathrm{r}}+$	9 ms		Position Ident		$\mathrm{P}_{\mathrm{r}}+99 \mathrm{~ms}$
${ }^{1}$ The bit time is the time of the bit leading edge and refers to the leading edge of P_{r}.																

Table 5-2. IRIG-A Control Bit Assignment for Year Information

| Pos. Id | Ctrl Bit No | Designation | |
| :--- | :--- | :--- | :--- | :--- |
| P_{0} to P_{5} is BCD TOY in seconds, minutes, hours, days, and fractional seconds. | | | |
| P_{49} | -- | P_{5} | Position Identifier \#5 |
| P_{50} | Year 1 | Year, BCD 1 | LSB 2 digits of year in BCD |
| P_{51} | Year 2 | Year, BCD 2 | IBID |
| P_{52} | Year 3 | Year, BCD 4 | IBID |
| P_{53} | Year 4 | Year, BCD 8 | IBID |
| P_{54} | -- | Not Used | Index Marker |
| P_{55} | Year 6 | Year, BCD 10 | MSB 2 digits of year in BCD |
| P_{56} | Year 7 | Year, BCD 20 | IBID |
| P_{57} | Year 8 | Year, BCD 40 | IBID |
| P_{58} | Year 9 | Year, BCD 80 | IBID |
| P_{59} | -- | P_{6} | Position Identifier \#6 |
| P_{60} | 1 | Not Used | Control Bit |
| P_{61} | 2 | IBID | IBID |
| P_{62} | 3 | IBID | IBID |
| P_{63} | 4 | IBID | IBID |
| P_{64} | 5 | IBID | IBID |
| P_{65} | 6 | IBID | IBID |
| P_{66} | 7 | IBID | IBID |
| P_{67} | 8 | IBID | IBID |
| P_{68} | 9 | IBID | IBID |
| P_{69} | -- | P | Position Identifier \#7 |
| P_{70} | 10 | Not Used | Control Bit |
| P_{71} | 11 | IBID | IBID |
| P_{72} | 12 | IBID | IBID |
| P_{73} | 13 | IBID | IBID |
| P_{74} | 14 | IBID | IBID |
| P_{75} | 15 | IBID | IBID |
| P_{76} | 16 | IBID | IBID |
| P_{77} | 17 | IBID | IBID |
| P_{78} | 18 | IBID | IBID |
| P_{79} | -- | P $_{8}$ | Position Identifier \#8 |
| P_{6} to P_{8} are control functions | | | |
| P_{8} to P_{0} is TOD in straight binary seconds. | | | |
| | | | |

Table 5-3. Parameters for Format A	
Pulse Rates	Pulse Duration
Bit rate: 1 kpps	
Position identifier rate: 100 pps	Index marker: 0.2 ms
Reference marker: 10 pps	Binary 0 or un-encoded bit: 0.2 ms
	Binary 1 or coded bit: 0.5 ms
	Position identifiers: 0.8 ms
	Reference bit: 0.8 ms
Resolution	Mark-To-Space Ratio
1 ms dc level	Nominal value of $10: 3$
0.1 ms modulated 10 kHz carrier	Range of 3:1 to 6:1

5.3 Format B

The following is a detailed description of IRIG time code format B.

- The beginning of each 1.0 -second time frame is identified by two consecutive $8.0-\mathrm{ms}$ bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers, P_{0} and P_{1} through P_{9} each use 10 ms of the time frame, one full index count duration. Position identifiers occur every 10 ms before the leading edge of each succeeding tenth index count (see Figure 5-2).
- The three time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 100 pps . The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and the index markers have duration of 2.0 ms and a binary 1 has duration of 5.0 ms .
- The BCD TOY code word consists of 30 bits beginning at index count 1 . The subword bits occur between position identifiers P_{0} and P_{5}; there are 7 bits for seconds, 7 for minutes, 6 for hours, and 10 for days. Additionally, there are 17 SBS bits. Year information is coded in 8 bits occurring between position identifiers P_{5} and P_{6} to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The BCD TOY code recycles yearly. Each bit position is identified in Table 5-4.
- There are 18 CFs occurring between position identifiers P_{6} and P_{8}. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- The SBS TOD word begins at index count 80 and occurs between position identifiers P_{8} and P_{0}. A position identifier occurs between the ninth and tenth binary coded bit. The code recycles each 24-hour period.
- Control bit assignments, functions, and parameters for time code format B are shown on the following pages.
Table 5-5: Identifies the control bit assignments for year information.
Table 5-6: Identifies the parameters that characterize the time code for Format B.

Figure 5-2. Format B: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits.

Table 5-4. Format B, Signal B000

BCD Time-of-Year Code (30 Digits)															
Seconds Subword			Minutes Subword			Hours Subword			Days Subword						
	Subword Digit Wt Seconds	Bit Time ${ }^{1}$	BCD Code Digit No	Subword Digit Wt Minutes	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time	$\begin{array}{\|c\|} \hline \text { BCD } \\ \text { Code } \\ \text { Digit No. } \end{array}$	Subword Digit Wt Days	Bit Time	$\begin{aligned} & \hline \text { BCD } \\ & \text { Digit } \end{aligned}$		Subwor Digit Wt Days	Bit Time
Reference Bit		P_{r}	8	1	$\mathrm{P}_{\mathrm{r}}+100 \mathrm{~ms}$	15	1	$\mathrm{P}_{\mathrm{r}}+200 \mathrm{~ms}$	21	1	$\mathrm{P}_{\mathrm{r}}+300 \mathrm{~ms}$	29		100	$\mathrm{P}_{\mathrm{r}}+400 \mathrm{~ms}$
1	1	$\mathrm{P}_{\mathrm{r}}+10 \mathrm{~ms}$	9	2	$\mathrm{P}_{\mathrm{r}}+110 \mathrm{~ms}$	16	2	$\mathrm{P}_{\mathrm{r}}+210 \mathrm{~ms}$	22	2	$\mathrm{P}_{\mathrm{r}}+310 \mathrm{~ms}$	30		200	$\mathrm{P}_{\mathrm{r}}+410 \mathrm{~ms}$
2	2	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~ms}$	10	4	$\mathrm{P}_{\mathrm{r}}+120 \mathrm{~ms}$	17	4	$\mathrm{P}_{\mathrm{r}}+220 \mathrm{~ms}$	23	4	$\mathrm{P}_{\mathrm{r}}+320 \mathrm{~ms}$		Index		$\mathrm{P}_{\mathrm{r}}+420 \mathrm{~ms}$
3	4	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{~ms}$	11	8	$\mathrm{P}_{\mathrm{r}}+130 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+230 \mathrm{~ms}$	24	8	$\mathrm{P}_{\mathrm{r}}+330 \mathrm{~ms}$	Index Bit			$\mathrm{P}_{\mathrm{r}}+430 \mathrm{~ms}$
4	8	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+140 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+240 \mathrm{~ms}$	Index Bit		$\frac{\mathrm{P}_{\mathrm{r}}+340 \mathrm{~ms}}{\mathrm{P}_{\mathrm{r}}+350 \mathrm{~ms}}$		Index		$\mathrm{P}_{\mathrm{r}}+440 \mathrm{~ms}$
Index Bit		$\mathrm{P}_{\mathrm{r}}+50 \mathrm{~ms}$	12	10	$\mathrm{P}_{\mathrm{r}}+150 \mathrm{~ms}$	19	10	$\mathrm{P}_{\mathrm{r}}+250 \mathrm{~ms}$	25.10						$\mathrm{P}_{\mathrm{r}}+450 \mathrm{~ms}$
5	10	$\mathrm{P}_{\mathrm{r}}+60 \mathrm{~ms}$	13	20	$\mathrm{P}_{\mathrm{r}}+160 \mathrm{~ms}$	20	20	$\mathrm{P}_{\mathrm{r}}+260 \mathrm{~ms}$	26	20	$\mathrm{P}_{\mathrm{r}}+360 \mathrm{~ms}$	Index Bit			$\mathrm{P}_{\mathrm{r}}+460 \mathrm{~ms}$
6	20	$\mathrm{P}_{\mathrm{r}}+70 \mathrm{~ms}$	14	40	$\mathrm{P}_{\mathrm{r}}+170 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+270 \mathrm{~ms}$	27	40	$\mathrm{P}_{\mathrm{r}}+370 \mathrm{~ms}$	Index Bit			$\mathrm{P}_{\mathrm{r}}+470 \mathrm{~ms}$
7	40	$\mathrm{P}_{\mathrm{r}}+80 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+180 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+280 \mathrm{~ms}$	28	80	$\mathrm{P}_{\mathrm{r}}+380 \mathrm{~ms}$	Index Bit			$\mathrm{P}_{\mathrm{r}}+480 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{Pr}_{\mathrm{r}}+90 \mathrm{~ms}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+190 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+290 \mathrm{~ms}$	Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+390 \mathrm{~ms}$	Position Ident. (P_{5})			$\mathrm{P}_{\mathrm{r}}+490 \mathrm{~ms}$
Year and Control Functions (27 Bits)								Straight Binary Seconds Time-of-Day Code (17 Digits)							
$\begin{gathered} \text { Control } \\ \text { Function } \\ \hline \end{gathered}$	Bit Time		Control Function Bit	Bit Time	Control Function Bit	Bit Time		$\begin{gathered} \hline \hline \text { SB Code } \\ \text { Bit } \\ \hline \end{gathered}$	Subword Digit Weight		Bit Time	$\begin{gathered} \hline \text { SB Code } \\ \text { Bit } \end{gathered}$	Subword Digit Weight		Bit Time
1	$\begin{gathered} \mathrm{P}_{\mathrm{r}}+500 \mathrm{~ms} \text { Units } \\ \text { of Year } 01 \end{gathered}$		1	$\mathrm{P}_{\mathrm{r}}+600 \mathrm{~ms}$	10	$\mathrm{P}_{\mathrm{r}}+700 \mathrm{~ms}$		1	$2^{0}=$ (1)		$\mathrm{P}_{\mathrm{r}}+800 \mathrm{~ms}$	10	$2^{9}=(512)$		$\mathrm{P}_{\mathrm{r}}+900 \mathrm{~ms}$
2	Units of Year 02		2	$\mathrm{P}_{\mathrm{r}}+610 \mathrm{~ms}$	11	$\mathrm{P}_{\mathrm{r}}+710 \mathrm{~ms}$		2	$2^{1}=(2)$		$\mathrm{P}_{\mathrm{r}}+810 \mathrm{~ms}$	11 $2^{10}=(1024)$ 12 2^{11}			$\begin{aligned} & \hline \mathrm{P}_{\mathrm{r}}+910 \mathrm{~ms} \\ & \hline \mathrm{P}_{\mathrm{r}}+920 \mathrm{~ms} \\ & \hline \end{aligned}$
3	Units of Year 04		3	$\mathrm{P}_{\mathrm{r}}+620 \mathrm{~ms}$	12	$\mathrm{P}_{\mathrm{r}}+720 \mathrm{~ms}$		3	$2^{2}=(4)$		$\mathrm{P}_{\mathrm{r}}+820 \mathrm{~ms}$	12	$2^{11}=(2048)$		
4	Units of Year 08		4	$\mathrm{P}_{\mathrm{r}}+630 \mathrm{~ms}$	13	$\mathrm{P}_{\mathrm{r}}+730 \mathrm{~ms}$		4	$2^{3}=(8)$		$\mathrm{P}_{\mathrm{r}}+830 \mathrm{~ms}$	13	$2^{12}=(4096)$		$\begin{array}{\|c} \hline \mathrm{P}_{\mathrm{r}}+920 \mathrm{~ms} \\ \hline \mathrm{P}_{\mathrm{r}}+930 \mathrm{~ms} \\ \hline \end{array}$
Index Ma	$\mathrm{P}_{\mathrm{r}}+540 \mathrm{~ms}$		5	$\mathrm{P}_{\mathrm{r}}+640 \mathrm{~ms}$	14	$\mathrm{P}_{\mathrm{r}}+740 \mathrm{~ms}$		5	$2^{4}=(16)$		$\mathrm{P}_{\mathrm{r}}+840 \mathrm{~ms}$	14	$2^{13}=(8192)$		$\mathrm{P}_{\mathrm{r}}+940 \mathrm{~ms}$
5	Tens of Year 10		6	$\mathrm{P}_{\mathrm{r}}+650 \mathrm{~ms}$	15	$\mathrm{P}_{\mathrm{r}}+750 \mathrm{~ms}$		6	$2^{5}=(32)$		$\mathrm{P}_{\mathrm{r}}+850 \mathrm{~ms}$	15	$2^{14}=(16384)$		$\mathrm{P}_{\mathrm{r}}+950 \mathrm{~ms}$
6	Tens of Year 20		7	$\mathrm{P}_{\mathrm{r}}+660 \mathrm{~ms}$	16	$\mathrm{P}_{\mathrm{r}}+760 \mathrm{~ms}$		7	$2^{6}=(64)$		$\mathrm{P}_{\mathrm{r}}+860 \mathrm{~ms}$	$\frac{16}{17}$	$\begin{aligned} & \frac{2^{15}=(32768)}{2^{16}=(65536)} \\ & \hline \end{aligned}$		$\mathrm{P}_{\mathrm{r}}+960 \mathrm{~ms}$
7	Tens of Year 40		8	$\mathrm{P}_{\mathrm{r}}+670 \mathrm{~ms}$	17		770 ms	8	$2^{7}=(128)$		$\mathrm{P}_{\mathrm{r}}+870 \mathrm{~ms}$				$\mathrm{P}_{\mathrm{r}}+970 \mathrm{~ms}$
8			9	$\mathrm{P}_{\mathrm{r}}+680 \mathrm{~ms}$	18		780 ms	9	$2^{8}=(256)$		$\mathrm{P}_{\mathrm{r}}+880 \mathrm{~ms}$	Index Bit			$\frac{\mathrm{P}_{\mathrm{r}}+980 \mathrm{~ms}}{\mathrm{P}_{\mathrm{r}}+990 \mathrm{~ms}}$
$\begin{gathered} \hline \text { Position Ic } \\ \left(\mathrm{P}_{6}\right) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{r}}+590 \mathrm{~ms}$		Position Ident. $\left(\mathrm{P}_{7}\right)$	$\mathrm{P}_{\mathrm{r}}+690 \mathrm{~ms}$	$\begin{gathered} \hline \text { Position } \\ \text { Ident. }\left(\mathrm{P}_{8}\right) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{r}}+790 \mathrm{~ms}$		Position Ident. (P_{9})			$\mathrm{P}_{\mathrm{r}}+890 \mathrm{~ms}$	Positio	Ident	(P_{0})	
${ }^{1}$ The bit time is the time of the bit leading edge and refers to the leading edge of P_{r}.															

Table 5-5. IRIG-B Control Bit Assignment for Year Information

Pos. ID	Ctrl Bit No		Designation		
P_{0} to P_{5} is BCD TOY in seconds, minutes, hours, and days.					
P_{49}	--	P_{5}	Position Identifier \#5		
P_{50}	Year 1	Year, BCD 1	Last 2 digits of year in BCD		
P_{51}	Year 2	Year, BCD 2	IBID		
P_{52}	Year 3	Year, BCD 4	IBID		
P_{53}	Year 4	Year, BCD 8	IBID		
P_{54}	--	Not Used	Unassigned		
P_{55}	Year 5	Year, BCD 10	Last 2 digits of year in BCD		
P_{56}	Year 6	Year, BCD 20	IBID		
P_{57}	Year 7	Year, BCD 20	IBID		
P_{58}	Year 8	Year, BCD 20	IBID		
P_{59}	--	P_{6}	Position Identifier \#6		
P_{60}	1	Not Used	Control Bit		
P_{61}	2	IBID	IBID		
P_{62}	3	IBID	IBID		
P_{63}	4	IBID	IBID		
P_{64}	5	IBID	IBID		
P_{65}	6	IBID	IBID		
P_{66}	7	IBID	IBID		
P_{67}	8	IBID	IBID		
P_{68}	9	IBID	IBID		
P_{69}	--	P $_{7}$	Position Identifier \#7		
P_{70}	10	Not Used	Control Bit		
P_{71}	11	IBID	IBID		
P_{72}	12	IBID	IBID		
P_{73}	13	IBID	IBID		
P_{74}	14	IBID	IBID		
P_{75}	15	IBID	IBID		
P_{76}	16	IBID	IBID		
P_{77}	17	IBID	IBID		
P_{78}	18	IBID	IBID		
P_{79}	--	P			
P_{6} to P_{8} are control functions	Position Identifier \#8				
P_{8} to P_{0} is TOD in SBS.					

Table 5-6. Parameters for Format B	
Pulse Rates	Pulse Duration
Bit rate: 100 pps	
Position identifier: 10 pps	Index marker: 2 ms
Reference mark: 1 pps	Binary 0 or un-encoded bit: 2 ms
	Binary 1 or coded bit: 5 ms
Position identifiers: 8 ms	
	Reference bit: 8 ms
Resolution	Mark-To-Space Ratio
10 ms dc level	Nominal value of $10: 3$ 1 ms modulated 1 kHz carrier Range of 3:1 to $6: 1$

5.4 Format D

The following is a detailed description of IRIG time code format D.

- The beginning of each 1-hour time frame is identified by two consecutive 48 -second bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time point for the succeeding time code word. Position identifiers P_{0} and P_{1} through P_{5} each use 1 minute of the time frame, one full index count duration. Position identifiers occur every minute before the leading edge of each succeeding tenth index count (see Figure 5-3).
- The time code word and the control bits presented during the time frame are pulse-width coded. The time code bit rate is 1 ppm . The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and the index markers each have duration of 12 seconds and the binary 1 has duration of 30 seconds.
- The BCD TOY code consists of 16 bits beginning at index count 20. The subword bits occur between position identifiers P_{2} and $\mathrm{P}_{5}: 6$ bits for hours and 10 bits for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in Table 5-7.
- Nine control bits occur between position identifiers P_{5} and P_{0}. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Details of the parameters that characterize the time code for format D are shown in Table 5-8.

Figure 5-3. Format D: BCD Time-of-Year in Days and Hours and Control Bits

Table 5-7. Format D, Signal D001

BCD Time-of-Year Code (16 Digits)								
Minutes Subword						Hours Subword		
BCD Code Digit No.	Subword Digit Wt Minutes	Bit Time ${ }^{1}$	BCD Code Digit No.	Subword Digit Wt Minutes	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time
Reference Bit		P_{r}	Index Marker		$\mathrm{P}_{\mathrm{r}}+10 \mathrm{~min}$	1	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+1 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+11 \mathrm{~min}$	2	2	$\mathrm{P}_{\mathrm{r}}+21 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+2 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+12 \mathrm{~min}$	3	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+3 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+13 \mathrm{~min}$	4	8	$\mathrm{P}_{\mathrm{r}}+23 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+4 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+14 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+24 \mathrm{~min}$
Index Marker		$\mathrm{Pr}_{\mathrm{r}}+5 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+15 \mathrm{~min}$	5	10	$\mathrm{P}_{\mathrm{r}}+25 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+6 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+16 \mathrm{~min}$	6	20	$\mathrm{P}_{\mathrm{r}}+26 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+7 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+17 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+27 \mathrm{~min}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+8 \mathrm{~min}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+18 \mathrm{~min}$	Inde	Marker	$\mathrm{P}_{\mathrm{r}}+28 \mathrm{~min}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+9 \mathrm{~min}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+19 \mathrm{~min}$	Positio	Ident. (P_{3})	$\mathrm{P}_{\mathrm{r}}+29 \mathrm{~min}$
Days Subword						Control Functions (9 Bits)		
BCD Code Digit No.	Subword Digit Wt Days	Bit Time	BCD Code Digit No.	Subword Digit Wt Days	Bit Time	Control	unction Bit	Bit Time
7	1	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{~min}$	15	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{~min}$		1	$\mathrm{P}_{\mathrm{r}}+50 \mathrm{~min}$
8	2	$\mathrm{P}_{\mathrm{r}}+31 \mathrm{~min}$	16	200	$\mathrm{P}_{\mathrm{r}}+41 \mathrm{~min}$		2	$\mathrm{P}_{\mathrm{r}}+51 \mathrm{~min}$
9	4	$\mathrm{P}_{\mathrm{r}}+32 \mathrm{~min}$		Marker	$\mathrm{P}_{\mathrm{r}}+42 \mathrm{~min}$		3	$\mathrm{P}_{\mathrm{r}}+52 \mathrm{~min}$
10	8	$\mathrm{P}_{\mathrm{r}}+33 \mathrm{~min}$	Ind	Marker	$\mathrm{P}_{\mathrm{r}}+43 \mathrm{~min}$		4	$\mathrm{P}_{\mathrm{r}}+53 \mathrm{~min}$
	ex Bit	$\mathrm{P}_{\mathrm{r}}+34 \mathrm{~min}$	Ind	Marker	$\mathrm{P}_{\mathrm{r}}+44$ min		5	$\mathrm{P}_{\mathrm{r}}+54$ min
11	10	$\mathrm{P}_{\mathrm{r}}+35 \mathrm{~min}$		Marker	$\mathrm{P}_{\mathrm{r}}+45 \mathrm{~min}$		6	$\mathrm{P}_{\mathrm{r}}+55 \mathrm{~min}$
12	20	$\mathrm{P}_{\mathrm{r}}+36 \mathrm{~min}$		Marker	$\mathrm{Pr}_{\mathrm{r}}+46 \mathrm{~min}$		7	$\mathrm{P}_{\mathrm{r}}+56 \mathrm{~min}$
13	40	$\mathrm{P}_{\mathrm{r}}+37 \mathrm{~min}$		Marker	$\mathrm{P}_{\mathrm{r}}+47 \mathrm{~min}$		8	$\mathrm{P}_{\mathrm{r}}+57 \mathrm{~min}$
14	80	$\mathrm{P}_{\mathrm{r}}+38 \mathrm{~min}$	Ind	Marker	$\mathrm{P}_{\mathrm{r}}+48 \mathrm{~min}$		9	$\mathrm{P}_{\mathrm{r}}+58 \mathrm{~min}$
Positi	Ident. (P_{4})	$\mathrm{P}_{\mathrm{r}}+39 \mathrm{~min}$	Positio	Ident. (P_{5})	$\mathrm{P}_{\mathrm{r}}+49 \mathrm{~min}$	Positio	Ident. (P_{0})	$\mathrm{P}_{\mathrm{r}}+59 \mathrm{~min}$
The bit time	the time of the bit lear	ling edge and	fers to the le	ding edge of P_{r}.				

Table 5-8. Parameters for Format D	
Pulse Rates	Pulse Duration
Bit rate: 1 ppm	
Position identifiers: 6 pph	
Reference mark: 1 pph	Index marker: 12 s
	Binary 0 or un-encoded bit: 12 s
	Binary 1 or coded bit: 30 s
Position identifiers: 48 s	
Reference bit: 48 s	
Resolution	Mark-To-Space Ratio
1 m dc level	Nominal value of $10: 1$
10 ms modulated 100 Hz carrier	Range of 3:1 to $6: 1$
1 ms modulated 1 kHz carrier	

5.5 Format E

The following is a detailed description of IRIG time code format E.

- The beginning of each 10 -second time frame is identified by two consecutive $80-\mathrm{ms}$ bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers P_{0} and P_{1} through P_{9} each use 100 ms of the time frame, one full index count duration. Position identifiers occur every 0.1 second before the leading edge of each succeeding tenth index count (see Figure 5-4).
- The time code words and CFs presented during the time frame are pulse-width coded. The time code bit rate is 10 pps . The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 1 and index markers have duration of 20 ms and the binary 1 has duration of 50 ms .
- The BCD TOY code word consists of 26 bits beginning at index count 6 . The coded subword bits occur between position identifiers P_{0} and $\mathrm{P}_{5}: 3$ for tens of seconds, 7 for minutes, 6 for hours, and 10 for days. Year information is coded in 8 bits occurring between position identifiers P_{5} and P_{6} to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in Table 5-9.
- There are 18 CF bits occurring between position identifiers P_{6} and P_{8}. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Control bit assignments, functions, and parameters for time code format E are shown on the following pages.

Table 5-10: IRIG-E control bit assignment for year information.
Table 5-11: Parameters for format E .

Figure 5-4. Format E: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Control Bits

Table 5-9. Format E, Signal E001

BCD Time-Of-Year Code (26 Digits)														
Seconds Subword			Minutes Subword			Hours Subword			Days Subword					
BCD Code Digit No.	Subword Digit Wt Seconds	Bit Time ${ }^{1}$	BCD Code Digit No.	Subword Digit Wt Minutes	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time	BCD Code Digit No.	Subword Digit Wt Days	Bit Time	BCD Code Digit No.	Subword Digit Wt Days	Bit Time
Reference Bit		P_{r}	4	1	$\mathrm{P}_{\mathrm{r}}+1.0 \mathrm{sec}$	11	1	$\mathrm{P}_{\mathrm{r}}+2.0 \mathrm{sec}$	17	,	$\mathrm{P}_{\mathrm{r}}+3.0 \mathrm{sec}$	25	100	$\mathrm{P}_{\mathrm{r}}+4.0 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.1 \mathrm{sec}$	5	2	$\mathrm{P}_{\mathrm{r}}+1.1 \mathrm{sec}$	12	2	$\mathrm{P}_{\mathrm{r}}+2.1 \mathrm{sec}$	18	2	$\mathrm{P}_{\mathrm{r}}+3.1 \mathrm{sec}$	26	200	$\mathrm{P}_{\mathrm{r}}+4.1 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.2 \mathrm{sec}$	6	4	$\mathrm{P}_{\mathrm{r}}+1.2 \mathrm{sec}$	13	4	$\mathrm{P}_{\mathrm{r}}+2.2 \mathrm{sec}$	19	4	$\mathrm{P}_{\mathrm{r}}+3.2 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+4.2 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.3 \mathrm{sec}$	7	8	$\mathrm{P}_{\mathrm{r}}+1.3 \mathrm{sec}$	14	8	$\mathrm{P}_{\mathrm{r}}+2.3 \mathrm{sec}$	20	8	$\mathrm{P}_{\mathrm{r}}+3.3 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+4.3 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.4 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+1.4 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+2.4 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+3.4 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+4.4 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+0.5 \mathrm{sec}$	8	10	$\mathrm{P}_{\mathrm{r}}+1.5 \mathrm{sec}$	15	10	$\mathrm{P}_{\mathrm{r}}+2.5 \mathrm{sec}$	21	10	$\mathrm{P}_{\mathrm{r}}+3.5 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+4.5 \mathrm{sec}$
1	10	$\mathrm{P}_{\mathrm{r}}+0.6 \mathrm{sec}$	9	20	$\mathrm{P}_{\mathrm{r}}+1.6 \mathrm{sec}$	16	20	$\mathrm{P}_{\mathrm{r}}+2.6 \mathrm{sec}$	22	20	$\mathrm{P}_{\mathrm{r}}+3.6 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+4.6 \mathrm{sec}$
2	20	$\mathrm{P}_{\mathrm{r}}+0.7 \mathrm{sec}$	10	40	$\mathrm{P}_{\mathrm{r}}+1.7 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+2.7 \mathrm{sec}$	23	40	$\mathrm{P}_{\mathrm{r}}+3.7 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+4.7 \mathrm{sec}$
3	40	$\mathrm{P}_{\mathrm{r}}+0.8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+1.8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+2.8 \mathrm{sec}$	24	80	$\mathrm{P}_{\mathrm{r}}+3.8 \mathrm{sec}$	Index	arker	$\mathrm{P}_{\mathrm{r}}+4.8 \mathrm{sec}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+0.9 \mathrm{sec}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+1.9 \mathrm{sec}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+2.9 \mathrm{sec}$	Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+3.9 \mathrm{sec}$	Position	nt. (P_{5})	$\mathrm{P}_{\mathrm{r}}+4.9 \mathrm{sec}$

Year And Control Functions And SBS (43 Bits)									
Year Function Bit	Bit Time	Control Function Bit	Bit Time	Control Function Bit	Bit Time	Control Function Bit	Bit Time	Control Function Bit	Bit Time
1	$\mathrm{P}_{\mathrm{r}}+5.0 \mathrm{sec}$	1	$\mathrm{P}_{\mathrm{r}}+6.0 \mathrm{sec}$	10	$\mathrm{P}_{\mathrm{r}}+7.0 \mathrm{sec}$	2^{0}	$\mathrm{P}_{\mathrm{r}}+8.0 \mathrm{sec}$	2^{9}	$\mathrm{P}_{\mathrm{r}}+9.0 \mathrm{sec}$
2	$\mathrm{P}_{\mathrm{r}}+5.1 \mathrm{sec}$	2	$\mathrm{P}_{\mathrm{r}}+6.1 \mathrm{sec}$	11	$\mathrm{P}_{\mathrm{r}}+7.1 \mathrm{sec}$	2^{1}	$\mathrm{P}_{\mathrm{r}}+8.1 \mathrm{sec}$	2^{10}	$\mathrm{P}_{\mathrm{r}}+9.1 \mathrm{sec}$
4	$\mathrm{P}_{\mathrm{r}}+5.2 \mathrm{sec}$	3	$\mathrm{P}_{\mathrm{r}}+6.2 \mathrm{sec}$	12	$\mathrm{P}_{\mathrm{r}}+7.2 \mathrm{sec}$	2^{2}	$\mathrm{P}_{\mathrm{r}}+8.2 \mathrm{sec}$	2^{11}	$\mathrm{P}_{\mathrm{r}}+9.2 \mathrm{sec}$
8	$\mathrm{P}_{\mathrm{r}}+5.3 \mathrm{sec}$	4	$\mathrm{P}_{\mathrm{r}}+6.3 \mathrm{sec}$	13	$\mathrm{P}_{\mathrm{r}}+7.3 \mathrm{sec}$	2^{3}	$\mathrm{P}_{\mathrm{r}}+8.3 \mathrm{sec}$	2^{12}	$\mathrm{P}_{\mathrm{r}}+9.3 \mathrm{sec}$
Index Marker	$\mathrm{P}_{\mathrm{r}}+5.4 \mathrm{sec}$	5	$\mathrm{P}_{\mathrm{r}}+6.4 \mathrm{sec}$	14	$\mathrm{P}_{\mathrm{r}}+7.4 \mathrm{sec}$	2^{4}	$\mathrm{P}_{\mathrm{r}}+8.4 \mathrm{sec}$	2^{13}	$\mathrm{P}_{\mathrm{r}}+9.4 \mathrm{sec}$
6	$\mathrm{P}_{\mathrm{r}}+5.5 \mathrm{sec}$	6	$\mathrm{P}_{\mathrm{r}}+6.5 \mathrm{sec}$	15	$\mathrm{Pr}_{\mathrm{r}}+7.5 \mathrm{sec}$	2^{5}	$\mathrm{P}_{\mathrm{r}}+8.5 \mathrm{sec}$	2^{14}	$\mathrm{P}_{\mathrm{r}}+9.5 \mathrm{sec}$
7	$\mathrm{P}_{\mathrm{r}}+5.6 \mathrm{sec}$	7	$\mathrm{P}_{\mathrm{r}}+6.6 \mathrm{sec}$	16	$\mathrm{P}_{\mathrm{r}}+7.6 \mathrm{sec}$	2^{6}	$\mathrm{P}_{\mathrm{r}}+8.6 \mathrm{sec}$	2^{15}	$\mathrm{P}_{\mathrm{r}}+9.6 \mathrm{sec}$
8	$\mathrm{P}_{\mathrm{r}}+5.7 \mathrm{sec}$	8	$\mathrm{P}_{\mathrm{r}}+6.7 \mathrm{sec}$	17	$\mathrm{P}_{\mathrm{r}}+7.7 \mathrm{sec}$	2^{7}	$\mathrm{P}_{\mathrm{r}}+8.7 \mathrm{sec}$	2^{16}	$\mathrm{P}_{\mathrm{r}}+9.7 \mathrm{sec}$
9	$\mathrm{P}_{\mathrm{r}}+5.8 \mathrm{sec}$	9	$\mathrm{P}_{\mathrm{r}}+6.8 \mathrm{sec}$	18	$\mathrm{P}_{\mathrm{r}}+7.8 \mathrm{sec}$	2^{8}	$\mathrm{P}_{\mathrm{r}}+8.8 \mathrm{sec}$	Index Marker	$\mathrm{P}_{\mathrm{r}}+9.8 \mathrm{sec}$
Position Ident. (P_{6})	$\mathrm{P}_{\mathrm{r}}+5.9 \mathrm{sec}$	Position Ident. (P_{7})	$\mathrm{P}_{\mathrm{r}}+6.9 \mathrm{sec}$	Position Ident. (P_{8})	$\mathrm{P}_{\mathrm{r}}+7.9 \mathrm{sec}$	Position Ident. (P_{9})	$\mathrm{P}_{\mathrm{r}}+8.9 \mathrm{sec}$	Position Ident (P_{0})	$\mathrm{P}_{\mathrm{r}}+9.9 \mathrm{sec}$

${ }^{1}$ The bit time is the time of the bit leading edge and refers to the leading edge of Pr .

Table 5-10. IRIG-E Control Bit Assignment For Year Information

Pos. ID	Ctrl Bit No.	Designation	Explanation
P_{0} to P_{5} is BCD TOY in seconds, minutes, hours, and days.			
P_{49}	--	P_{5}	Position Identifier \#5
P_{50}	Year 1	Units of Year, BCD 1	LSB 2 digits of year in BCD
P_{51}	Year 2	Units of Year, BCD 2	IBID
P_{52}	Year 3	Units of Year, BCD 4	IBID
P_{53}	Year 4	Units of Year, BCD 8	IBID
P_{54}	--	Not Used	Index Marker
P_{55}	Year 5	Tens of Year, BCD 10	MSD 2 digits of year in BCD
P_{56}	Year 6	Tens of Year, BCD 20	IBID
P_{57}	Year 7	Tens of Year, BCD 40	IBID
P_{58}	Year 8	Tens of Year, BCD 80	IBID
P_{59}	--	P_{6}	Position Identifier \#6
P_{60}	1	Not Used	Control Bit
P_{61}	2	IBID	IBID
P_{62}	3	IBID	IBID
P_{63}	4	IBID	IBID
P_{64}	5	IBID	IBID
P_{65}	6	IBID	IBID
P_{66}	7	IBID	IBID
P_{67}	8	IBID	IBID
P_{68}	9	IBID	IBID
P_{69}	--	P_{7}	Position Identifier \#7
P_{70}	10	Not Used	Control Bits
P_{71}	11	IBID	IBID
P_{72}	12	IBID	IBID
P_{73}	13	IBID	IBID
P_{74}	14	IBID	IBID
P_{75}	15	IBID	IBID
P_{76}	16	IBID	IBID
P_{77}	17	IBID	IBID
P_{78}	18	IBID	IBID
P_{79}	--	P_{8}	Position Identifier \#8
P_{6} to P_{8} are control functions.			
P_{8} to P_{0} is the TOD in straight binary seconds.			

Table 5-11. Parameters for Format E	
Pulse Rates	Pulse Duration
Bit rate: 10 pps Position identifier: 1 pps Reference mark: 6 ppm	Index marker: 20 ms Binary 0 or un-encoded bit: 20 ms Binary 1 or coded bit: 50 ms Position identifier: 80 ms Reference bit: 80 ms
Resolution	Mark-To-Space Ratio
0.1 second dc level 10 ms modulated 100 Hz carrier 1 ms modulated 1 kHz carrier	Nominal value of $10: 3$ Range of $3: 1$ to $6: 1$

5.6 Format G

The following is a detailed description of IRIG time code format G.

- The beginning of each 0.01 -second time frame is identified by two consecutive $80-\mu \mathrm{s}$ bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code word. Position identifiers P_{0} and P_{1} through P_{9} each use 0.1 ms of the time frame, one full index count duration. Position identifiers occur every 0.1 ms before the leading edge of each succeeding tenth index count (see Figure 5-5).
- The time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 10 kpps . The time code reference bit's leading edge is the ontime reference point for all bits and is the index count reference point. The binary 0 and index markers have durations of $20 \mu \mathrm{~s}$ and the binary 1 has duration of $50 \mu \mathrm{~s}$.
- The BCD TOY code word consists of 38 bits beginning at index count 1 . The subword bits occur between position identifiers P_{0} and P_{6} : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds. There are 8 bits for year information occurring between position identifiers P_{6} and P_{7} to complete the BCD time code word. An index marker occurs between the decimal digits in each subword, except for fractional seconds, to provide visual separation. The LSB occurs first, except for the fractional second information that follows the day-of-year information. The code recycles yearly. Each bit position is identified in Table 5-12.
- There are 27 control bits occurring between position identifiers P_{7} and P_{0}. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames. Each control bit position is identified in Table 5-12.
- Control bit assignments, functions, and parameters for time code format G are shown on the following pages.

Table 5-13: IRIG-G control bit assignment for year information.
Table 5-14: Parameters for format G .

Figure 5-5. Format G: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Fractions-ofSeconds, and Control Bits

Table 5-12. Format G, Signal G001

Seconds Subword			Minutes Subword			Hours Subword		
BCD Code Digit No.	Subword Digit Wt Seconds	Bit Time ${ }^{1}$	BCD Code Digit No.	Subword Digit Wt \qquad	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time
Reference Bit		Pr_{r}	8	1	$\mathrm{Pr}_{\mathrm{r}}+1.0 \mathrm{~ms}$	15	1	$\mathrm{Pr}_{\mathrm{r}}+2.0 \mathrm{~ms}$
1	1	$\mathrm{P}_{\mathrm{r}}+0.1 \mathrm{~ms}$	9	2	$\mathrm{Pr}_{\mathrm{r}}+1.1 \mathrm{~ms}$	16	2	$\mathrm{Pr}_{\mathrm{r}}+2.1 \mathrm{~ms}$
2	2	$\mathrm{Pr}_{\mathrm{r}}+0.2 \mathrm{~ms}$	10	4	$\mathrm{Pr}_{\mathrm{r}}+1.2 \mathrm{~ms}$	17	4	$\mathrm{Pr}_{\mathrm{r}}+2.2 \mathrm{~ms}$
3	4	$\mathrm{P}_{\mathrm{r}}+0.3 \mathrm{~ms}$	11		$\mathrm{P}_{\mathrm{r}}+1.3 \mathrm{~ms}$	18	8	$\mathrm{P}_{\mathrm{r}}+2.3 \mathrm{~ms}$
4	8	$\mathrm{P}_{\mathrm{r}}+0.4 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+1.4 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+2.4 \mathrm{~ms}$
Index Bit		$\mathrm{P}_{\mathrm{r}}+0.5 \mathrm{~ms}$	12	10	$\mathrm{P}_{\mathrm{r}}+1.5 \mathrm{~ms}$	19	10	$\mathrm{P}_{\mathrm{r}}+2.5 \mathrm{~ms}$
5	10	$\mathrm{Pr}_{\mathrm{r}}+0.6 \mathrm{~ms}$		20	$\mathrm{Pr}_{\mathrm{r}}+1.6 \mathrm{~ms}$	20	20	$\mathrm{Pr}_{\mathrm{r}}+2.6 \mathrm{~ms}$
6	20	$\mathrm{P}_{\mathrm{r}}+0.7 \mathrm{~ms}$	14		$\mathrm{P}_{\mathrm{r}}+1.7 \mathrm{~ms}$	Index Bit		$\mathrm{P}_{\mathrm{r}}+2.7 \mathrm{~ms}$
7	40	$\mathrm{P}_{\mathrm{r}}+0.8 \mathrm{~ms}$	Index Bit		$\mathrm{Pr}_{\mathrm{r}}+1.8 \mathrm{~ms}$	Index Bit		$\mathrm{Pr}_{\mathrm{r}}+2.8 \mathrm{~ms}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+0.9 \mathrm{~ms}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+1.9 \mathrm{~ms}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+2.9 \mathrm{~ms}$
Days And Fractional Second Subword						Fractional Second Subword		
BCD Code Digit No.	Subword Digit Wt Days	Bit Time	BCD Code Digit No.	Subword Digit Wt Days	Bit Time	BCD Code Digit No.	Subword Digit Wt Seconds	Bit Time
21	1	$\mathrm{Pr}_{\mathrm{r}}+3.0 \mathrm{~ms}$	29	100	$\mathrm{P}_{\mathrm{r}}+4.0 \mathrm{~ms}$	35	0.01	$\mathrm{Pr}_{\mathrm{r}}+5.0 \mathrm{~ms}$
22	2	$\mathrm{P}_{\mathrm{r}}+3.1 \mathrm{~ms}$	30	200	$\mathrm{P}_{\mathrm{r}}+4.1 \mathrm{~ms}$	36	0.02	$\mathrm{P}_{\mathrm{r}}+5.1 \mathrm{~ms}$
23	4	$\mathrm{Pr}_{\mathrm{r}}+3.2 \mathrm{~ms}$		x Bit	$\mathrm{Pr}_{\mathrm{r}}+4.2 \mathrm{~ms}$	37	0.04	$\mathrm{Pr}_{\mathrm{r}}+5.2 \mathrm{~ms}$
24	8	$\mathrm{P}_{\mathrm{r}}+3.3 \mathrm{~ms}$		x Bit	$\mathrm{P}_{\mathrm{r}}+4.3 \mathrm{~ms}$	38	0.08	$\mathrm{P}_{\mathrm{r}}+5.3 \mathrm{~ms}$
	Bit	$\mathrm{P}_{\mathrm{r}}+3.4 \mathrm{~ms}$		x Bit	$\mathrm{P}_{\mathrm{r}}+4.4 \mathrm{~ms}$		ex Bit	$\mathrm{P}_{\mathrm{r}}+5.4 \mathrm{~ms}$
25	10	$\mathrm{P}_{\mathrm{r}}+3.5 \mathrm{~ms}$	31	0.1	$\mathrm{P}_{\mathrm{r}}+4.5 \mathrm{~ms}$		ex Bit	$\mathrm{P}_{\mathrm{r}}+5.5 \mathrm{~ms}$
26	20	$\mathrm{Pr}_{\mathrm{r}}+3.6 \mathrm{~ms}$	32	0.2	$\mathrm{Pr}_{\mathrm{r}}+4.6 \mathrm{~ms}$		ex Bit	$\mathrm{Pr}_{\mathrm{r}}+5.6 \mathrm{~ms}$
27	40	$\mathrm{P}_{\mathrm{r}}+3.7 \mathrm{~ms}$	33	0.4	$\mathrm{P}_{\mathrm{r}}+4.7 \mathrm{~ms}$		ex Bit	$\mathrm{P}_{\mathrm{r}}+5.7 \mathrm{~ms}$
28	80	$\mathrm{Pr}_{\mathrm{r}}+3.8 \mathrm{~ms}$	34	0.8	$\mathrm{Pr}_{\mathrm{r}}+4.8 \mathrm{~ms}$		ex Bit	$\mathrm{Pr}_{\mathrm{r}}+5.8 \mathrm{~ms}$
Positio	nt. (P_{4})	$\mathrm{P}_{\mathrm{r}}+3.9 \mathrm{~ms}$	Positio	Ident. (P_{5})	$\mathrm{P}_{\mathrm{r}}+4.9 \mathrm{~ms}$		Ident. (P_{6})	$\mathrm{P}_{\mathrm{r}}+5.9 \mathrm{~ms}$
			Year and	Control Functions	Bits)			
Year Function Bit	Bit Time		rol Function Bit	Bit Time ${ }^{\text {c }}$	Function Bit	Bit Time	Control Function Bit	Bit Time
1	$\mathrm{Pr}_{\mathrm{r}}+6.0 \mathrm{~ms}$ Units of	ar 01	1	$\mathrm{Pr}_{\mathrm{r}}+7.0 \mathrm{~ms}$	10	$\mathrm{Pr}_{\mathrm{r}}+8.0 \mathrm{~ms}$	19	$\mathrm{Pr}_{\mathrm{r}}+9.0 \mathrm{~ms}$
2	Units of Year		2	$\mathrm{P}_{\mathrm{r}}+7.1 \mathrm{~ms}$	11	$\mathrm{P}_{\mathrm{r}}+8.1 \mathrm{~ms}$	20	$\mathrm{P}_{\mathrm{r}}+9.1 \mathrm{~ms}$
3	Units of Year		3	$\mathrm{Pr}_{\mathrm{r}}+7.2 \mathrm{~ms}$	12	$\mathrm{Pr}_{\mathrm{r}}+8.2 \mathrm{~ms}$	21	$\mathrm{Pr}_{\mathrm{r}}+9.2 \mathrm{~ms}$
4	Units of Year		4	$\mathrm{Pr}_{\mathrm{r}}+7.3 \mathrm{~ms}$	13	$\mathrm{Pr}^{+}+8.3 \mathrm{~ms}$	22	$\mathrm{Pr}_{\mathrm{r}}+9.3 \mathrm{~ms}$
Index Mark	$\mathrm{P}_{\mathrm{r}}+6.4 \mathrm{~m}$		5	$\mathrm{P}_{\mathrm{r}}+7.4 \mathrm{~ms}$	14	$\mathrm{P}_{\mathrm{r}}+8.4 \mathrm{~ms}$	23	$\mathrm{P}_{\mathrm{r}}+9.4 \mathrm{~ms}$
6	Tens of Year		6	$\mathrm{P}_{\mathrm{r}}+7.5 \mathrm{~ms}$	15	$\mathrm{P}_{\mathrm{r}}+8.5 \mathrm{~ms}$	24	$\mathrm{P}_{\mathrm{r}}+9.5 \mathrm{~ms}$
7	Tens of Year		7	$\mathrm{P}_{\mathrm{r}}+7.6 \mathrm{~ms}$	16	$\mathrm{P}_{\mathrm{r}}+8.6 \mathrm{~ms}$	25	$\mathrm{P}_{\mathrm{r}}+9.6 \mathrm{~ms}$
8	Tens of Year		8	$\mathrm{P}_{\mathrm{r}}+7.7 \mathrm{~ms}$	17	$\mathrm{P}_{\mathrm{r}}+8.7 \mathrm{~ms}$	26	$\mathrm{P}_{\mathrm{r}}+9.7 \mathrm{~ms}$
9	Tens of Year		9	$\mathrm{Pr}_{\mathrm{r}}+7.8 \mathrm{~ms}$	18	$\mathrm{P}_{\mathrm{r}}+8.8 \mathrm{~ms}$	27	$\mathrm{P}_{\mathrm{r}}+9.8 \mathrm{~ms}$
Position Ident. (P_{7})	$\mathrm{P}_{\mathrm{r}}+6.9 \mathrm{~m}$		ition Ident. (P_{8})	$\mathrm{P}_{\mathrm{r}}+7.9 \mathrm{~ms}$ Positic	n Ident. (P_{9})	$\mathrm{P}_{\mathrm{r}}+8.9 \mathrm{~ms}$	Position Ident. (P_{0})	$\mathrm{P}_{\mathrm{r}}+9.9 \mathrm{~ms}$
${ }^{1}$ The bit time is the t	of the bit leading ed	nd refers to	leading edge of P_{r}					

Table 5-13. IRIG-G Control Bit Assignment for Year Information

Pos. ID	Ctrl Bit No	Designation	Explanation
P_{0} to P_{6} is BCD TOY in seconds, minutes, hours, days, and fraction of seconds.			
P_{59}	-	P_{6}	Position Identifier \#6
P_{60}	Year 1	Units Year, BCD 1	LSB 2 digits of year in BCD
P_{61}	Year 2	Units Year, BCD 2	IBID
P_{62}	Year 3	Units Year, BCD 4	IBID
P_{63}	Year4	Units Year, BCD 8	IBID
P_{64}	Index Marker	Units Not Used	Unassigned
P_{65}	Year 5	Units Year, BCD 10	MSB 2 digits of year in BCD
P_{66}	Year 6	Units Year, BCD 20	IBID
P_{67}	Year 7	Units Year, BCD 40	IBID
P_{68}	Year 8	Units Year, BCD 80	IBID
P_{69}	--	P_{7}	Position Identifier \#7
P_{70}	1	Not Used	Control Bit
P_{71}	2	IBID	IBID
P_{72}	3	IBID	IBID
P_{73}	4	IBID	IBID
P_{74}	5	IBID	IBID
P_{75}	6	IBID	IBID
P_{76}	7	IBID	IBID
P_{77}	8	IBID	IBID
P_{78}	9	IBID	IBID
P_{79}	--	P_{8}	Position Identifier \#8
P_{80}	10	Not Used	Control Bit
P_{81}	11	IBID	IBID
P_{82}	12	IBID	IBID
P_{83}	13	IBID	IBID
P_{84}	14	IBID	IBID
P_{85}	15	IBID	IBID
P_{86}	16	IBID	IBID
P_{87}	17	IBID	IBID
P_{88}	18	IBID	IBID
P_{89}	--	P_{9}	Position Identifier \#9
P_{90}	19	Not Used	Control Bit
P_{91}	20	IBID	IBID
P_{92}	21	IBID	IBID
P_{93}	22	IBID	IBID
P_{94}	23	IBID	IBID
P_{95}	24	IBID	IBID
P_{96}	25	IBID	IBID
P_{97}	26	IBID	IBID
P_{98}	27	IBID	IBID
P99	--	P_{10}	Position Identifier \#10

P_{8} to P_{0} are control functions.
Note: The bit time is the time of the bit leading edge and refers to the leading edge of P_{r}

Table 5-14. Parameters For Format G	
Pulse Rates	Pulse Duration
Bit rate: 10 kpps	
Position identifier: 1 kpps	Index marker: $20 \mu \mathrm{~s}$
Reference marker: 100 pps	Binary 0 or un-encoded bit: $20 \mu \mathrm{~s}$
	Binary 1 or coded bit: $50 \mu \mathrm{~s}$ Position identifiers: $80 \mu \mathrm{~s}$ Reserelution Mark-To-Space Ratio 80 0.1 ms dc level $10 \mu \mathrm{~s}$ modulated 100 kHz carrier

5.7 Format H

The following is a detailed description of IRIG time code format H .

- The beginning of each 1-minute time frame is identified by two consecutive 0.8 -second bits, P_{0} and P_{r}. The leading edge of P_{r} is the on-time reference point for the succeeding time code words. Position identifiers P_{0} and P_{1} through P_{5} each use 1 second of the time frame, one full index count duration. Position identifiers occur every 1 second before the leading edge of each succeeding tenth index count (see Figure 5-6).
- The time code word and the CFs presented during the time frame are pulse-width coded. The binary 0 and the index markers each have duration of 0.2 seconds and a binary 1 has duration of 0.5 seconds. The leading edge is the 1-pps on-time reference point for all bits.
- The BCD TOY consists of 23 bits beginning at index count 10. The subword bits occur between position identifiers P_{1} and $\mathrm{P}_{5}: 7$ for minutes, 6 for hours, and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in Table 5-15.
- There are 9 CFs occurring between position identifiers P_{5} and P_{0}. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Details of the IRIG format H parameters are shown at Table 5-16.

Figure 5-6. Format H: BCD Time-of-Year in Days, Hours, Minutes, and Control Bits

Table 5-15. Format H, Signal H001

BCD Time-of-Year Code (23 Digits)								
Seconds Subword			Minutes Subword			Hours Subword		
BCD Code Digit No.	Subword Digit Wt Seconds	Bit Time ${ }^{1}$	BCD Code Digit No.	Subword Digit Wt Minutes	Bit Time	BCD Code Digit No.	Subword Digit Wt Hours	Bit Time
Reference Bit		P_{r}	1	1	$\mathrm{P}_{\mathrm{r}}+10 \mathrm{sec}$	8	1	$\mathrm{P}_{\mathrm{r}}+20 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+1 \mathrm{sec}$	2	2	$\mathrm{P}_{\mathrm{r}}+11 \mathrm{sec}$	9	2	$\mathrm{P}_{\mathrm{r}}+21 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+2 \mathrm{sec}$	3	4	$\mathrm{P}_{\mathrm{r}}+12 \mathrm{sec}$	10	4	$\mathrm{P}_{\mathrm{r}}+22 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+3 \mathrm{sec}$	4	8	$\mathrm{P}_{\mathrm{r}}+13 \mathrm{sec}$	11	8	$\mathrm{P}_{\mathrm{r}}+23 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+4 \mathrm{sec}$	Index Marker		$\begin{aligned} & \frac{\mathrm{P}_{\mathrm{r}}+14 \mathrm{sec}}{\mathrm{P}_{\mathrm{r}}+15 \mathrm{sec}} \end{aligned}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+24 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+5 \mathrm{sec}$	5 5 10			12	10	$\mathrm{P}_{\mathrm{r}}+25 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+6 \mathrm{sec}$	6	20	$\mathrm{P}_{\mathrm{r}}+16 \mathrm{sec}$	13	20	$\mathrm{P}_{\mathrm{r}}+26 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+7 \mathrm{sec}$	7	40	$\mathrm{P}_{\mathrm{r}}+17 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+27 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+8 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+18 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+28 \mathrm{sec}$
Position Ident. (P_{1})		$\mathrm{P}_{\mathrm{r}}+9 \mathrm{sec}$	Position Ident. (P_{2})		$\mathrm{P}_{\mathrm{r}}+19 \mathrm{sec}$	Position Ident. (P_{3})		$\mathrm{P}_{\mathrm{r}}+29 \mathrm{sec}$
Days Subword						Control Functions (9 Bits)		
BCD Code Digit No.	Subword Digit Wt Days	Bit Time	BCD Code Digit No.	Subword Digit Wt Days	Bit Time	Control Function Bit		Bit Time
14	1	$\mathrm{P}_{\mathrm{r}}+30 \mathrm{sec}$	22	100	$\mathrm{P}_{\mathrm{r}}+40 \mathrm{sec}$		1	$\mathrm{P}_{\mathrm{r}}+50 \mathrm{sec}$
15	2	$\mathrm{P}_{\mathrm{r}}+31 \mathrm{sec}$	33	200	$\mathrm{P}_{\mathrm{r}}+41 \mathrm{sec}$	2		$\mathrm{P}_{\mathrm{r}}+51 \mathrm{sec}$
16	4	$\mathrm{P}_{\mathrm{r}}+32 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+42 \mathrm{sec}$	3		$\mathrm{P}_{\mathrm{r}}+52 \mathrm{sec}$
17	8	$\mathrm{P}_{\mathrm{r}}+33 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+43 \mathrm{sec}$	4		$\mathrm{P}_{\mathrm{r}}+53 \mathrm{sec}$
Index Marker		$\mathrm{P}_{\mathrm{r}}+34 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+44 \mathrm{sec}$	5		$\mathrm{P}_{\mathrm{r}}+54 \mathrm{sec}$
18	10	$\mathrm{P}_{\mathrm{r}}+35 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+45 \mathrm{sec}$	6		$\mathrm{P}_{\mathrm{r}}+55 \mathrm{sec}$
19	20	$\mathrm{P}_{\mathrm{r}}+36 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+46 \mathrm{sec}$	7		$\mathrm{P}_{\mathrm{r}}+56 \mathrm{sec}$
20	40	$\mathrm{P}_{\mathrm{r}}+37 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+47 \mathrm{sec}$	8		$\mathrm{P}_{\mathrm{r}}+57 \mathrm{sec}$
21	80	$\mathrm{P}_{\mathrm{r}}+38 \mathrm{sec}$	Index Marker		$\mathrm{P}_{\mathrm{r}}+48 \mathrm{sec}$	9		$\mathrm{P}_{\mathrm{r}}+58 \mathrm{sec}$
Position Ident. (P_{4})		$\mathrm{P}_{\mathrm{r}}+39 \mathrm{sec}$	Position Ident. (P_{5})		$\mathrm{P}_{\mathrm{r}}+49 \mathrm{sec}$	Position Ident. (P_{0})		$\mathrm{P}_{\mathrm{r}}+59 \mathrm{sec}$

${ }^{1}$ The bit time is the time of the bit leading edge and refers to the leading edge of P_{r}.

Table 5-16. Parameters for Format H

Pulse Rates	Pulse Duration
Bit rate: 1 pps	Index marker: 0.2 s
Position identifier: 6 ppm	Binary 0 or un-encoded bit: 0.2 s
Reference marker: 1 ppm	Binary 1 or coded bit: 0.5 s
	Position identifiers: 0.8 s
	Reference bit: 0.8 s
Resolution	Mark-To-Space Ratio
1 second dc level	Nominal value of $10: 3$
10 ms modulated 100 Hz carrier	Range of 3:1 to $6: 1$
1 ms modulated 1 kHz carrier	

This page intentionally left blank.

Appendix A

Leap Year/Leap Second Conventions

A. 1 Leap Year Convention

The USNO Astronomical Applications Department defines the leap year according to the Gregorian calendar, which was instituted by Pope Gregory VIII in 1582 to keep the year in a cycle with the seasons. The average Gregorian calendar year, technically known as the Tropical Year, is approximately 365.2425 days in length and it will take about 3,326 years before the Gregorian calendar is as much as one day out of step with the seasons.

According to the Gregorian calendar, which is the civil calendar in use today, years that are evenly divisible by 4 are leap years with the exception of century years that are not evenly divisible by 400 . This means that years $1700,1800,1900,2100,2200$, and 2500 are NOT leap years and that years 1600,2000 , and 2400 ARE leap years.

Additional information can be found at the following USNO web sites.

- http://timeanddate.com/date/leapyear.html
- http://aa.usno.navy.mil/faq/docs/leap years.html

A. 2 Leap Second Convention

Civil time is occasionally adjusted by one-second increments to insure that the difference between a uniform time-scale defined by International Atomic Time (TAI) does not differ from the Earth's rotational time by more than 0.9 seconds. Consequently, UTC, also an atomic time, was established in 1972 and is adjusted for the Earth's rotation and forms the basis for civil time.

There have been 35 leap seconds added to UTC to keep it in synchronization with the rotation of the earth. In 1980, when the Global Positioning System (GPS) came into being, it was initially synchronized to UTC; however, GPS time does not add or subtract leap seconds, and as of this writing, GPS time is 16 seconds ahead of UTC. The relationship between TAI and UTC is given by a simple accumulation of leap seconds occurring approximately once per year. If required, time changes are made on December 31 and on June 30 at 2400 hours.

$$
\begin{aligned}
& \text { At any instant }(\mathrm{i}), \mathrm{T}_{\mathrm{i}}=\text { TAI time, } \\
& \qquad \begin{array}{l}
U_{i}=\text { UTC time expressed in seconds, and } \\
\mathrm{T}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i}}+L_{i}
\end{array}
\end{aligned}
$$

where L_{i} is the accumulated leap second additions between the epoch and the instant (i).
The USNO maintains a history of accumulated leap seconds on one of their web sites. The site URL is: $\mathrm{ftp}: / / \mathrm{maia} . u s n o . n a v y . \mathrm{mil} / \mathrm{ser} 7 / \mathrm{tai}-u t \mathrm{c} . \mathrm{dat}$, which provides a list of TAI minus UTC from 1961 to 1999. As of the publication date of this document, the last leap second occurred in June 2012. Additional information can be obtained from the USNO's Earth Orientation Department at the following web sites.

- http://maia.usno.navy.mil/eo/leapsec.html
- http://tycho.usno.navy.mil/leapsec.990505.html

This page intentionally left blank.

Appendix B

BCD Count/Binary Count

Refer to Table B-1 for the BCD count data and Table B-2 for binary count data.

Table B-1. BCD Count (8n 4n 2n 1n)					
Decimal Number	\mathbf{n}	BCD Bits			
1	1	1			
5	1	3			
10	10	5			
15	10	5			
150	100	9			
1500	1×10^{3}	13			
15,000	10×10^{3}	17			
150,000	100×10^{3}	21			
$1,500,000$	1×10^{6}	25			
$15,000,000$	10×10^{6}	29			
$150,000,000$	100×10^{6}	33			
$1,500,000,000$	1×10^{6}	37			
$15,000,000,000$	10×10^{9}	41			
$1,50,000,000,000$	100×10^{9}	45			
$15,000,000,000,000$	1×10^{12}	49			
$150,000,000,000,000$	10×10^{12}	53			
				100×10^{12}	57

Table B-2. Binary Count (2n)			
Decimal Number	Binary Number	Decimal Number	Binary Number
\mathbf{N}	$\mathbf{2 n}^{\mathbf{n}}$	\mathbf{n}	$\mathbf{2}^{\mathbf{n}}$
0	1		
1	2	26	$67,108,864$
2	4	27	$134,217,728$
3	8	28	$268,435,456$
4	16	29	$536,870,912$
5	32	30	$1,073,741,824$
6	64	31	$2,147,483,648$
7	128	32	$4,294,967,296$
8	256	33	$8,589,934,592$
9	512	34	$17,179,869,184$
10	1024	35	$34,359,738,368$
11	2048	36	$68,719,476,736$
12	4096	37	$137,438,953,472$
13	8192	38	$274,877,906,944$
14	16,384	39	$549,755,813,888$

Table B-2. Binary Count (2n)

Decimal Number	Binary Number	Decimal Number	Binary Number
15	32,768	40	$1,099,511,627,776$
16	65,536	41	$2,199,023,255,552$
17	131,072	42	$4,398,046,511,104$
18	262,144	43	$8,796,093,022,208$
19	524,288	44	$17,592,186,044,416$
20	$1,048,576$	45	$35,184,372,088,832$
21	$2,097,152$	46	$70,368,744,177,664$
22	$4,194,304$	47	$140,737,488,355,328$
23	$8,388,608$	48	$281,474,976,710,656$
24	$16,777,216$	49	$562,949,953,421,312$
25	$33,554,432$	50	$1,125,899,906,842,620$

Appendix C

Hardware Design Considerations

\left.| Table C-1. Time Code Generator Hardware Minimum Design | | | |
| :---: | :---: | :---: | :---: |
| Considerations | | | |\(\right\left.] \begin{array}{c}Code

\hline\end{array} $$
\begin{array}{c}\text { Level (dc) Pulse Rise Time } \\
\text { Between the 10 and 90\% } \\
\text { Amplitude Points }\end{array}
$$ \quad $$
\begin{array}{c}\text { Jitter Modulated at } \\
\text { Carrier Frequency } \\
\text { Pulse-to-Pulse }\end{array}
$$\right]\)

This page intentionally left blank

Appendix D

Glossary

D. 1 Definitions of Terms And Usage

Accuracy - Systematic uncertainty (deviation) of a measured value with respect to a standard reference.

Binary Coded Decimal (BCD) - A numbering system that uses decimal digits encoded in a binary representation (1 n 2 n 4 n 8 n) where $\mathrm{n}=1,10,100,1 \mathrm{k}, 10 \mathrm{k} . . \mathrm{N}$ (see appendix B).

Binary numbering system (Straight Binary) - A numbering system that has two as its base and uses two symbols, usually denoted by 0 and 1 (see appendix B).

Frame rate - The repetition rate of the time code.
Global Positioning System (GPS) - a U.S. owned utility that provides users with positioning, navigation, and timing services.

IBID - Latin, short for ibidem, meaning "in the same place."
Index count - The number that identifies a specific bit position with respect to a reference marker.

Index markers - Uuencoded, periodic, interpolating bits in the time code.
Instrumentation Timing - A parameter serving as the fundamental variable in terms of which data may be correlated.

Leap second - See appendix A.
Leap year - See appendix A.
On-time - The state of any bit being coincident with a standard time reference (USNO or National Bureau of Standards or other national laboratory).

On-time reference marker - The leading edge of the reference bit P_{r} of each time frame.
Position identifier - A particular bit denoting the position of a portion or all of a time code.
Precision - An agreement of measurement with respect to a defined value.
Reference marker - A periodic combination of bits that establishes that instant of time defined by the time code word.

Resolution (of a time code) - The smallest increment of time or least significant bit that can be defined by a time code word or subword.

Second - Basic unit of time or time interval in the International System of Units (SI).
Subword - A subdivision of the time code word containing only one type of time unit, for example, days, hours, seconds, or milliseconds.

Time - Signifies epoch, i.e., the designation of an instant of time on a selected time scale such as astronomical, atomic, or UTC.

Time code - A system of symbols used for identifying specific instants of time.
Time code word - A specific set of time code symbols that identifies one instant of time. A time code word may be subdivided into subwords.

Time frame - The time interval between consecutive reference markers that contains all the bits that determine the time code format.

Time interval - The duration between two instants read on the same time scale, usually expressed in seconds or in a multiple or sub multiple of a second.

Time reference - The basic repetition rate chosen as the common time reference for all instrumentation timing (usually 1 pps).

Time T_{0} - The initial time $0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$, January 1 , or the beginning of an epoch.

Appendix E

Citations

Range Commanders Council. IRIG Standard Parallel Binary and Parallel Binary Coded Decimal Time Code Formats. RCC 205-87. August 1987. May be superseded by update. Retrieved on 29 July 2015. Available to RCC members with Private Page access at https://wsdmext.wsmr.army.mil/site/rccpri/Publications/205-
87 IRIG_Standard_Parallel_Binary_and Parallel_Binary_Coded Decimal_Time_Code_ Formats/.

[^0]: ${ }^{1}$ Range Commanders Council. IRIG Standard Parallel Binary and Parallel Binary Coded Decimal Time Code Formats. RCC 205-87. August 1987. May be superseded by update. Retrieved on 29 July 2015. Available to RCC members with Private Page access at https://wsdmext.wsmr.army.mil/site/rccpri/Publications/205-
 87 IRIG_Standard Parallel Binary and Parallel Binary Coded Decimal Time Code Formats/.

